论文部分内容阅读
为进一步提升方向梯度直方图-局部二值模式(HOG-LBP)特征融合的行人算法在检测精度以及加快融合后的算法检测速度,提出了一种基于级联特征分类器的行人检测算法。计算样本集的方向梯度共生直方图(CoHOG)特征和鲁棒局部二值模式(RLBP)特征,使用这两种特征训练两种特征弱分类器,并将两种特征融合训练CoHOG-RLBP特征弱分类器。针对算法中存在的特征维数过高导致算法检测速度慢的问题,将各特征分类器以不同数量进行级联,构建一个6级特征弱分类器组成的级联特征分类器实现对行人目标的检测,同时使用soft