【摘 要】
:
本文报道了用熔融法由常规的单模通信光纤制造宽温工作的低损耗单模光纤定向耦合器.工作波长为1.52μm,分束比为50%的封装器件;工作温度在-30~ 70℃范围,分束比容差小于±5%,插入损耗
论文部分内容阅读
本文报道了用熔融法由常规的单模通信光纤制造宽温工作的低损耗单模光纤定向耦合器.工作波长为1.52μm,分束比为50%的封装器件;工作温度在-30~ 70℃范围,分束比容差小于±5%,插入损耗
其他文献
现在有可能制作一种完全新型的太阳能会聚器,它能把普通会聚器的性能储存在一张薄薄的全息乳胶片上。在太阳能利用技术中,发展很快的一种新方法是全息会聚器。这种系统结构简单,造价低廉,而且跟踪太阳的能力用光学方法,不是目前会聚器所用机械方法所能及。为了充分弄清全息会聚器的演变过程,我们要回顾一下非成象光学系统在有效利用太阳能做功方面所起的作用。
原子磁力计作为弱磁测量的理想方式,其小型化非常重要。本文搭建体积仅为29 cm×42 cm×42 cm的小型半导体激光器,激光器的最大光功率为117 mW,激光功率12 h慢漂06%,频率慢漂为每24 h 28 MHz。将其嵌入到原子磁力计系统中,用于减小原子磁力计的体积。实验测量结果表明,小型激光器的频率慢漂和功率慢漂对磁力计影响较小,在10~300 Hz范围内,磁场测量的灵敏度最高能达到10 fT/Hz,满足高灵敏度磁场测量的需求。我们的工作为微型磁力计实用化提供了参考。
A scheme of combining smoothing by spectral dispersion (SSD) technology with lens array (LA) is introduced in laser produced shock wave experiments. The feasibility of the scheme is analyzed by numerical simulation. It is shown that the beam uniformity in
本仪器是专用于测量广角激光辐射发散度和目视功率按光束截面分布的指示仪器。利用角共振滤光片测量激光辐射的发散角。滤光片由两块玻璃棱镜组成,棱镜的对角边用空气隙分开。
从理论上阐释了基于独立双驱动马赫-曾德尔调制器(DDMZM)和同相正交调制器的两种单边带光信号调制原理。通过研究100 Gbit/s速率75 km标准单模光纤传输系统中的16-正交幅度调制单边带信号,分析了两种方法的参数调优原理。接收端使用Kramers-Kronig(KK)算法恢复单边带信号并消除信号与信号间的拍频串扰。结果表明,由于调制器的非线性以及单边带信号的载波信号功率比的影响,在误比特率为3.8×10
-3的7%硬判决前向纠错门限上,使用基于KK算法的接
研究了能级结构分别为Λ型三能级和V型三能级结构的两个原子和通过光纤耦合的由双模腔构成的复合系统中光场的压缩效应、二阶相干度和亚泊松分布等量子特性。利用数值计算方法讨论了光纤模与腔场间的耦合强度对量子特性的影响。研究结果表明: 双模光场不呈现压缩效应, 但呈现出反关联和亚泊松分布的量子特性; 随着光纤模与腔场间耦合强度的增强, 亚泊松分布减弱。
由于大口径望远镜主镜的拼接子镜为离轴非球面,所以增加了镜面的加工和检测难度。为了进一步提高离轴非球面子镜的加工效率和缩短抛光周期,本文利用预应力加载方法和基于蓝牙传输的接触式二维位移传感器阵列检测方法与相关装置,完成Φ380 mm口径的离轴非球面子镜的研磨实验。首先介绍预应力镜面加工的原理,接下来介绍Φ380 mm微晶玻璃镜面预应力研磨技术的检测方法和加载实验结果,然后介绍预应力研磨的收敛特性,最后利用三坐标测量机和接触式二维位移传感器阵列两种检测方法对研磨镜面的最终面形进行交
Laser-based light detection and ranging (lidar) plays a significant role in both scientific and industrial areas. However, it is difficult for existing lidars to achieve high speed, high precision, and long distance simultaneously. Here, we demonstrate a
We investigate the entanglement dynamics of a quantum system consisting of two two-level atoms in a cavity with classical driving fields in the presence of white noise. The cavity is initially prepared in the vacuum state. Generally, the entanglement of t