论文部分内容阅读
基于全卷积神经网络的手势分割方法过于依赖大量精准标注的训练样本,同时由于提取特征中缺乏足够的上下文信息,常出现类内不一致的错分现象。针对上述问题,本文提出一种基于风格迁移的手势分割方法。首先选择HGR-Net手势分割网络的前5层作为主干网络,并在主干网各层添加上下文信息增强层,使用全局均值池化操作,结合通道注意机制,增强显著性特征通道的权值,保证特征上下文信息的连续性,从而解决类内不一致问题;其次,本文还提出一种基于风格迁移的领域自适应方法,使用VGG网络,对源域测试图像进行风格迁移预处理,使其同时