论文部分内容阅读
在基于内容的图像检索和分类系统中,图像的底层特征和高层语义之间存在着语义鸿沟,有效减小语义鸿沟是一个需要广泛研究的问题。为此,提出一种基于特征互补率矩阵的图像分类方法,该方法通过计算视觉特征互补率矩阵进而指导融合特征集的选择,利用测度学习算法得到一个合适的距离测度以反映图像高层语义的相似度。实验结果表明,该方法能有效提高图像分类精度。