论文部分内容阅读
【摘要】本文论述了概率统计的某些知识在实际问题中的应用,主要围绕公平性、朋友、巧合、决策等方面,从独特的视角对现实生活中的一些问题进行深入解读,并提供了解决问题的良好思路,揭示概率统计与实际生活的密切联系,为应用概率知识解决实际问题、数学模型的建立、学科知识的迁移奠定一定的理论基础。
【关键词】概率论 公平性 巧合 决策
The theory of probability in life
Yu Jiashang
【Abstract】In this article, the writer has made a discussion on some knowledge about the application of the probability Statistic in the factual problem, main rounding equitable quality, friend, coincidence and decision-making to have unscrambled some problem in factual life from the special angle. In addition, the excellent way for solving that has also been offered, which has laid a certain theoretic foundation for applying the probability knowledge to solve factual problems, build mathematics model and transfer subject knowledge and opening out the close relation between probability Statistic and factual problems.
【Keywords】Theory of probability Equitable quality Coincidence Decision-making
引言:概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。在日常生活中,周围的许多事物都和概率有着千丝万缕的联系,运用概率论可解读生活现象,透视社会规则,掌握制胜的生存哲学。本文将从公平性、朋友、巧合、决策等方面谈谈概率在生活中的应用。
1.概率与公平性。中奖的公平性是指中奖结果与排队的先后顺序无关。请看下面的问题:有奖券n张,其中有m张有奖。现有n个人排队依次抽取一张且不放回,问每个人中奖的机会是否相同?
分析:记( )表示第个人中奖,利用全概率公式
利用全概率公式计算 时,由于完备事件组中事件的个数为 ,随着k的增大,计算难度越来越大,当 时可用下面的方法分析:
首先考虑m=1的情形,即有n张奖券只有一张有奖。
记 ,则 ,显然 。
利用全概率公式
=
= =
再考虑m>1的情形:此时将m个奖中的任意m-1个改成其他的奖(共有m个奖)。于是上述模型转化为n张奖券,一个具体奖的情形,由上面的结果,不难得到 。
综上所述 。
在日常生活中,我们常用类似于上述中奖的方式决定一件事,如运动会中跑道的确定,比赛时歌手的出场顺序。上述结果表明排队时不必争先恐后,因为排队不分先后,中奖的结果是相同的,对每个人来说是公平合理的。
再来看一个问题:甲、乙、丙三人按下列规则进行比赛:第一局由甲、乙两人参加比赛而丙轮空,由第一局的优胜者与丙进行第二局比赛,失败者轮空,比赛用这种方法一直进行到其中一个连胜两局为止,连胜两局者视为比赛的优胜者。若甲、乙、丙胜每局的概率为 ,问这种规则公平吗?
分析:因为甲、乙获胜的可能性是相等的,可以一起考虑,这样事件发生的条件分三种:“丙胜两局,其他人各胜一局”;“丙胜一局,其他人各胜两局”;“甲、乙、丙各胜一局”。在第三个条件下,甲乙丙胜局数相同,可全部抵消,相当于从头开始,所以在这个条件下丙获胜的概率就是:
设E1=“丙胜两局,其他人各胜一局”,E2=“丙胜一局,其他人各胜两局”,E3=“甲、乙、丙各胜一局”。A=“甲获胜”,B=“乙获胜”,C=“丙获胜”则:
=
解得
可见计算比赛获胜的概率时,要分清比赛的特点,有针对性地去计算。这个例子告诉我们,运用概率论可解读生活现象,透视社会规则,掌握制胜的生存哲理。
2.朋友中的概率论。朋友是我们生活中的一部分,有了朋友,我们的生活才会充满阳光;朋友,值得我们珍惜一生!
2.1 人人都会找到生活中的朋友,因为有伯努利实验模型。根据伯努利实验模型,假设我们找到朋友的概率是0.00001,但是由于我们每天都在坚持不懈地重复试验(我们每天都在遇见不同的人),我们最终能遇见的概率就会很大。假设我们每天遇见135个不同的人(即做135次试验),一年我们就做了135×365=49275次重复试验。根据独立重复试验n次发生k次的概率公式 得50000×0.00001×0.606535=0.3032675。
这就是我们在一年内找到朋友的几率。况且我们可不只用一年来寻找。所以,几乎每个人都能找到自己的朋友,上帝是公平的。
2.2 有的朋友可以使我们一生去珍惜,因为有切比雪夫不等式。在每次实验中,事件:“遇到朋友的事件记为A”发生的概率为0.00001,利用切比雪夫不等式估计,在一年中,事件A发生的次数在0-20之间的概率。一年中,我们每天遇见135个不同的人,一年就做了135×365=49275次重复实验。
用x表示一年独立实验中事件A发生的次数,则
X-B(n,P) n=50000 P=0.00001
E(X)=np=0.5,D(X)=np(1-P)=0.499995
先把事件{0 {0 在切比雪夫不等式中,
P {0 即在一年独立实验中,事件A发生的次数为1的概率不小于0.00002。
在这里我们可以看出,一年中找到朋友虽然是小概率事件,但也不是不能发生的。反过来讲,一年中找到自己的朋友不容易,那我们就要好好珍惜一生。
3.生活中的巧合问题。在42位美国总统中,有两个人生日相同,一年的天数远大于42,怎么会如此巧合呢?下面我们用概率来解释:
例:某班有n个人(n≤365),问至少有两个人的生日在同一天的概率为多大?
本题属于古典概型中的投球问题,假定一年按365天计算,容易算得 对于不同的一些值,计算得相应的 ,如下表:
n 10 20 23 30 40 50 55
0.12 0.41 0.51 0.71 0.89 0.97 0.99
由表可以看出,当班级人数为23时,就有半数以上的班级发生这种事情,而当班级人数达到55时,几乎有两个人的生日在同一天。所以,在四十多位总统中生日相同,不足为奇。
4.概率与决策。决策就是根据一定的理论和方法,系统分析主客观条件,提出各种行动方案,从经济和费用两个方面进行比较评价,从中选择最优方案,从而做出决定。
例:某商店根据以往的经验预测在未来一段时间内商品畅销和滞销的概率分别为0.4、0.6。现有两种促销方案:①采用便民措施,提高服务质量,预计可在商品畅销时获利6万元,在商品滞销时获利2万元。②翻建商店扩大营业场所,预计可在商品畅销时获利10万元,在商品滞销时损失4万元。经过一段时间的试销发现:原来认为畅销的商品中实际畅销与滞销的概率分别为0.6、0.4,原来认为滞销的商品中实际畅销与滞销的概率分别为0.3、0.7。根据这一信息我们应采取哪种方案?
解:由全概率公式,可求得商品在试销过程中实际畅销、滞销的概率分别为P1、P2,则
又由贝叶斯公式可求得试销过程中实际畅销、滞销的商品被预测为畅销、滞销的概率分别为 则
可求出在试销过程中实际畅销的商品采取第一方案与第二方案所获得的均值为 ,则
可求出在试销过程中实际滞销的商品采取第一方案与第二方案所获得的均值为 ,则
由此可知无论商品畅销还是滞销,第一种方案均值较大,故采取第一种方案。
上面只是列举了概率在实际应用中的一些小片段,然而,作为一门独立的学科,概率的应用已经随处可见。尤其随着科技飞速发展,在实际问题中的其他方面也正在或将要发挥它应有的作用。
参考文献
1 魏宗舒等编.概率论和数理统计教程[M].高等教育出版社, 2003
2 龙永江主编.概率论和数理统计教程[M].高等教育出版社, 2004
3 程民德主编.《概率论与解题指南》[M].上海科学出版社, 1997.8
【关键词】概率论 公平性 巧合 决策
The theory of probability in life
Yu Jiashang
【Abstract】In this article, the writer has made a discussion on some knowledge about the application of the probability Statistic in the factual problem, main rounding equitable quality, friend, coincidence and decision-making to have unscrambled some problem in factual life from the special angle. In addition, the excellent way for solving that has also been offered, which has laid a certain theoretic foundation for applying the probability knowledge to solve factual problems, build mathematics model and transfer subject knowledge and opening out the close relation between probability Statistic and factual problems.
【Keywords】Theory of probability Equitable quality Coincidence Decision-making
引言:概率论在一定的社会条件下,通过人类的社会实践和生产活动发展起来,被广泛应用于各个领域,在国民经济的生产和生活中起着重要的作用。正如英国逻辑学家和经济学家杰文斯(Jevons,1835-1882)所说:概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为”。在日常生活中,周围的许多事物都和概率有着千丝万缕的联系,运用概率论可解读生活现象,透视社会规则,掌握制胜的生存哲学。本文将从公平性、朋友、巧合、决策等方面谈谈概率在生活中的应用。
1.概率与公平性。中奖的公平性是指中奖结果与排队的先后顺序无关。请看下面的问题:有奖券n张,其中有m张有奖。现有n个人排队依次抽取一张且不放回,问每个人中奖的机会是否相同?
分析:记( )表示第个人中奖,利用全概率公式
利用全概率公式计算 时,由于完备事件组中事件的个数为 ,随着k的增大,计算难度越来越大,当 时可用下面的方法分析:
首先考虑m=1的情形,即有n张奖券只有一张有奖。
记 ,则 ,显然 。
利用全概率公式
=
= =
再考虑m>1的情形:此时将m个奖中的任意m-1个改成其他的奖(共有m个奖)。于是上述模型转化为n张奖券,一个具体奖的情形,由上面的结果,不难得到 。
综上所述 。
在日常生活中,我们常用类似于上述中奖的方式决定一件事,如运动会中跑道的确定,比赛时歌手的出场顺序。上述结果表明排队时不必争先恐后,因为排队不分先后,中奖的结果是相同的,对每个人来说是公平合理的。
再来看一个问题:甲、乙、丙三人按下列规则进行比赛:第一局由甲、乙两人参加比赛而丙轮空,由第一局的优胜者与丙进行第二局比赛,失败者轮空,比赛用这种方法一直进行到其中一个连胜两局为止,连胜两局者视为比赛的优胜者。若甲、乙、丙胜每局的概率为 ,问这种规则公平吗?
分析:因为甲、乙获胜的可能性是相等的,可以一起考虑,这样事件发生的条件分三种:“丙胜两局,其他人各胜一局”;“丙胜一局,其他人各胜两局”;“甲、乙、丙各胜一局”。在第三个条件下,甲乙丙胜局数相同,可全部抵消,相当于从头开始,所以在这个条件下丙获胜的概率就是:
设E1=“丙胜两局,其他人各胜一局”,E2=“丙胜一局,其他人各胜两局”,E3=“甲、乙、丙各胜一局”。A=“甲获胜”,B=“乙获胜”,C=“丙获胜”则:
=
解得
可见计算比赛获胜的概率时,要分清比赛的特点,有针对性地去计算。这个例子告诉我们,运用概率论可解读生活现象,透视社会规则,掌握制胜的生存哲理。
2.朋友中的概率论。朋友是我们生活中的一部分,有了朋友,我们的生活才会充满阳光;朋友,值得我们珍惜一生!
2.1 人人都会找到生活中的朋友,因为有伯努利实验模型。根据伯努利实验模型,假设我们找到朋友的概率是0.00001,但是由于我们每天都在坚持不懈地重复试验(我们每天都在遇见不同的人),我们最终能遇见的概率就会很大。假设我们每天遇见135个不同的人(即做135次试验),一年我们就做了135×365=49275次重复试验。根据独立重复试验n次发生k次的概率公式 得50000×0.00001×0.606535=0.3032675。
这就是我们在一年内找到朋友的几率。况且我们可不只用一年来寻找。所以,几乎每个人都能找到自己的朋友,上帝是公平的。
2.2 有的朋友可以使我们一生去珍惜,因为有切比雪夫不等式。在每次实验中,事件:“遇到朋友的事件记为A”发生的概率为0.00001,利用切比雪夫不等式估计,在一年中,事件A发生的次数在0-20之间的概率。一年中,我们每天遇见135个不同的人,一年就做了135×365=49275次重复实验。
用x表示一年独立实验中事件A发生的次数,则
X-B(n,P) n=50000 P=0.00001
E(X)=np=0.5,D(X)=np(1-P)=0.499995
先把事件{0
P {0
在这里我们可以看出,一年中找到朋友虽然是小概率事件,但也不是不能发生的。反过来讲,一年中找到自己的朋友不容易,那我们就要好好珍惜一生。
3.生活中的巧合问题。在42位美国总统中,有两个人生日相同,一年的天数远大于42,怎么会如此巧合呢?下面我们用概率来解释:
例:某班有n个人(n≤365),问至少有两个人的生日在同一天的概率为多大?
本题属于古典概型中的投球问题,假定一年按365天计算,容易算得 对于不同的一些值,计算得相应的 ,如下表:
n 10 20 23 30 40 50 55
0.12 0.41 0.51 0.71 0.89 0.97 0.99
由表可以看出,当班级人数为23时,就有半数以上的班级发生这种事情,而当班级人数达到55时,几乎有两个人的生日在同一天。所以,在四十多位总统中生日相同,不足为奇。
4.概率与决策。决策就是根据一定的理论和方法,系统分析主客观条件,提出各种行动方案,从经济和费用两个方面进行比较评价,从中选择最优方案,从而做出决定。
例:某商店根据以往的经验预测在未来一段时间内商品畅销和滞销的概率分别为0.4、0.6。现有两种促销方案:①采用便民措施,提高服务质量,预计可在商品畅销时获利6万元,在商品滞销时获利2万元。②翻建商店扩大营业场所,预计可在商品畅销时获利10万元,在商品滞销时损失4万元。经过一段时间的试销发现:原来认为畅销的商品中实际畅销与滞销的概率分别为0.6、0.4,原来认为滞销的商品中实际畅销与滞销的概率分别为0.3、0.7。根据这一信息我们应采取哪种方案?
解:由全概率公式,可求得商品在试销过程中实际畅销、滞销的概率分别为P1、P2,则
又由贝叶斯公式可求得试销过程中实际畅销、滞销的商品被预测为畅销、滞销的概率分别为 则
可求出在试销过程中实际畅销的商品采取第一方案与第二方案所获得的均值为 ,则
可求出在试销过程中实际滞销的商品采取第一方案与第二方案所获得的均值为 ,则
由此可知无论商品畅销还是滞销,第一种方案均值较大,故采取第一种方案。
上面只是列举了概率在实际应用中的一些小片段,然而,作为一门独立的学科,概率的应用已经随处可见。尤其随着科技飞速发展,在实际问题中的其他方面也正在或将要发挥它应有的作用。
参考文献
1 魏宗舒等编.概率论和数理统计教程[M].高等教育出版社, 2003
2 龙永江主编.概率论和数理统计教程[M].高等教育出版社, 2004
3 程民德主编.《概率论与解题指南》[M].上海科学出版社, 1997.8