论文部分内容阅读
针对标准的竞争学习算法(rival penalized competitive learning,RPCL)在问题规模较大情况下,算法收敛速度较慢以及无法精确找到聚类q-心的问题,通过引入聚类中心计数值和全局距离向量的方法,提高了RPCL算法对于问题全局最优解的搜索能力,提出了一个基于聚类中心计数值和全局距离向量的RPCL算法改进。通过理论证明验证了该RPCI。算法可以有效提高RPCL算法对于全局最优聚类中心的搜索能力以及聚类结果的准确性,实验结果表明了理论推导的正确性以及该算法的可行性。