论文部分内容阅读
现有的面瘫识别方法均基于面部异常或不对称进行判断,但存在面部异常或不对称并不意味着一定是面瘫患者,如:正常人的面部在做某种表情或静止时可能存在不对称;正常人模仿面瘫患者时,也会存在异常和不对称。当重复临床诊断性面部动作时,存在面部异常或不对称的正常人常比患者表现出更大的差异,这是由于正常人相比于面瘫患者具有更健全的面部肌肉运动功能。因此,该文提出了一种基于深度差异特征网络(deep differentiated network,DDN)的面瘫识别方法,该方法对高层特征提取和差异特征计算进行联合优化。