论文部分内容阅读
在建筑外围布置复杂装饰结构能够进一步提高建筑的视觉效果,但复杂装饰结构对风荷载的敏感性往往要超过主体建筑,因此对建筑结构的抗风设计安全性提出了更高的要求.建筑外围装饰结构由于其体量小数量大而导致直接进行物理风洞试验变得几乎不可能,因此本文研究利用数值风洞技术来解决外围装饰结构的风荷载问题.结合高性能的硬件计算平台,通过设置合理的网格剖分形式,解决了流苏结构多个移动位置下的三维空间高质量网格的生成难题.数值模拟了各层流苏在不同风向角下的风荷载体型系数分布规律,并统计分析了所有风向角下流苏结构体型系数极值分布,给出了设计所需的各层流苏极值风参数取值范围.数值模拟结果显示出了流苏结构风荷载的极值区域位于建筑外形的拐角区域,当结构面临可能的大风天气时,流苏结构的停止位置宜避免将长条的流苏杆件置于上述区域,以提高流苏结构的抗风安全性.
However, the complex decorative structure is more sensitive to the wind load than the main building, so it puts forward higher requirements on the wind-resistant design safety of the building structure. It is almost impossible for the decoration structure to directly conduct the physical wind tunnel test because of its small volume, so this paper studies the use of numerical wind tunnel technology to solve the wind load problem of the peripheral decoration structure.With the high-performance hardware computing platform, A reasonable gridding mode is set up to solve the problem of generating high-quality meshes in three-dimensional space under various moving positions of tassel structure.The distribution rules of wind load coefficient of wind load at various layers of fringe are numerically simulated, The extremum distribution of the body coefficient of tassel structure under all heading angles is analyzed, and the range of fringe extremum wind parameters required for the design is given. The numerical simulation results show that the extreme value of the wind load of tassel structure lies in the shape of the building Corner area, when the structure is facing possible windy weather, tassel structure stop position should avoid the long Fringed rod placed in the above area, in order to improve the wind-resistant safety of the tassel structure.