充分非线性KdV-Burgers方程的最优控制

来源 :江苏大学学报:自然科学版 | 被引量 : 0次 | 上传用户:yolanda0104
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
研究充分非线性KdV-Burgers方程:ut-kuxx+βuxxx+unux=f在Dirichlet边界条件下的最优控制问题.给出了边界条件下的充分非线性KdV-Burgers方程解的存在性以及解的稳定性,证明了充分非线性KdV-Burgers方程的最优解的存在性,为进一步研究充分非线性KdV-Burgers方程的理论和工程技术应用提供了理论基础和依据.
其他文献
早产儿视网膜病变患儿近视发病率较高,严重影响患儿视觉发育及眼球发育。多巴胺(DA)是近视发生发展过程中一种重要的神经递质,参与视网膜信号传导及视觉系统生理活动。本文就
对16根试件进行了低周反复荷载试验研究.研究发现:由于转换柱试件的剪切作用明显,因此增加箍筋数量能够明显提升转换柱屈服后的变形能力,改善抗震耗能能力;影响型钢翼缘保护层厚度
采用低合金化、含锑多元复合孕育剂、扫描电镜、200 h台架试验、以及1 000 h耐久试验等方法对新型薄壁柴油机缸体铸件进行了研制与应用试验.试验结果表明:碳当量控制在 3.9%
为研究深翻、旋耕和深松不同耕作方式处理对土壤耕层物理性状和玉米生长发育的影响,采用长期定位试验,以当地传统耕作方式秋季旋耕为对照,设置免耕、苗期隔行深松30 cm、秋季翻
本文是对豫剧表演艺术家常香玉在其代表性优秀剧目《拷红》、《断桥》、《花木兰》中的演唱艺术的研究。论文对常香玉的演唱方法进行了分析。 论文除引言和结束语之外,主
建筑桩基础工程在建筑工程中有着重要的地位,其是建筑工程进行的一项基础性工程,直接影响到整个建筑工程的施工作业与建筑物质量。随着技术的不断更新,在建筑桩基础工程中,其