论文部分内容阅读
基于通过具体实验确定的Bisecting K-means聚类和Lemmatization形态变换算法,在汉英短语级人文社会科学平行语料基础上,尝试进行类别知识挖掘的实验.在中文社会科学引文索引(CSSCI)的类别和标题知识基础上,完成对汉英语料的预处理,并分析名词、动词和形容词的分布状况.在名词、动词和形容词等词性的组合基础上,对比不同词性组合的效果并确定最优的词性组合类别知识挖掘模型.