论文部分内容阅读
A non-local solution for a functionally graded piezoelectric nano-rod is presented by accounting the surface effect. This solution is used to evaluate the characteristics of the wave propagation in the rod structure. The model is loaded under a two-dimensional(2D) electric potential and an initially applied voltage at the top of the rod. The mechanical and electrical properties are assumed to be variable along the thickness direction of the rod according to the power law. The Hamilton principle is used to derive the governing differential equations of the electromechanical system. The effects of some important parameters such as the applied voltage and gradation of the material properties on the wave characteristics of the rod are studied.
A non-local solution for a functionally graded piezoelectric nano-rod is presented by accounting the surface effect. This solution is used to evaluate the characteristics of the wave propagation in the rod structure. The model is loaded under a two-dimensional (2D) electric potential and an initially applied voltage at the top of the rod. The mechanical and electrical properties are assumed to be variable along the thickness direction of the rod according to the power law. The Hamilton principle is used to derive the governing differential equations of the electromechanical system. The effects of some important parameters such as the applied voltage and gradation of the material properties on the wave characteristics of the rod are studied.