论文部分内容阅读
KNN算法是文本自动分类领域中的一种常用算法,对于低维度的文本分类,其分类准确率较高。然而在处理大量高维度文本时,传统KNN算法由于需处理大量训练样本导致样本相似度的计算量增加,降低了分类效率。为解决相关问题,本文首先利用粗糙集对高维文本信息进行属性约简,删除冗余属性,而后用改进的基于簇的KNN算法进行文本分类。通过仿真实验,证明该方法能够提高文本的分类精度和准确率。