论文部分内容阅读
行人再识别技术目前逐步被应用于视频监控、智能安防等领域。监控设备与日俱增,给研究工作提供了海量数据支持,但人工标注或检测器识别难以避免地引入带有噪声的数据标签。在进行大规模深度神经网络训练时,伴随数据量增加,标签的噪声给模型训练带来不可忽视的损害。为解决行人再识别的噪声标签问题,本文结合噪声、非噪声数据训练差异化特征,提出一种噪声标签自适应的行人再识别方法,不需要使用额外的验证集以及噪声比例、类型等先验信息,完成对噪声数据的筛选过滤。此外,本文方法自适应地学习噪声样本权重,进一步降低噪声影响。在含噪