论文部分内容阅读
数字高程模型(Digital Elevation Model,DEM)是一种至关重要的空间信息,广泛应用于各行各业。其中,ASTER GDEM与SRTM几乎覆盖了全球陆域,为地学研究提供了非常实用的高程数据支撑,但是由于二者传感器采集数据原理的不同,使得高程数据在不同地貌条件下的高程精度亦存在程度不一的误差。本文提出了一种新型的基于地貌特征的DEM融合方法,使得融合GDEM与SRTM后的DEM数据,消除了地貌特征的影响、显著地提高了DEM质量。该方法主要分为地理配准和高程融合2个步骤:(1)基于河流线对等线性地貌特征的位置数据,构建了GDEM与SRTM的水平偏移相关的误差评价函数,采用多级网格搜索法求得DEM间的水平偏移距离,实现对DEM的配准;(2)按照DEM高程值在不同地貌单元及边界线附近的高程变化特征,建立地貌分区的高程融合模型来融合两种地理配准后的DEM高程,尤其是实现了地貌单元边界线附近的高程平滑过渡。本文以怀柔北部地区为实验区,以1:5万地形图为参考,对2种DEM数据进行融合,统计结果表明:(1)融合DEM在各地貌单元的误差均显著下降,地形表达较之融合前更加精确;(2)高程差呈现正态分布,明显区别于融合前DEM不对称的多峰分布形态,说明地貌影响被有效地剔除;(3)GDEM和SRTM数据的精度对坡度有较大依赖性,融合后DEM的精度在不同坡度范围下均优于GDEM和SRTM,显著降低了融合前DEM对坡度的依赖程度;(4)在不同坡向下,GDEM和SRTM的RMSE取值波动较大,融合DEM的RMSE取值在各方向表现稳定,高程精度较GDEM和SRTM有显著提高。