论文部分内容阅读
传统的图像质量评价方法通常提取低维度特征即图像的片面信息用来分析图像质量。高维度特征尽管不易分析但保留了更多信息,更利于全面分析图像质量。针对这种现状,该文提出一种优化数据采样后基于高维度特征分析的图像质量评价方法。首先对图像数据采样分别利用块匹配进行筛选,用主成分分析进行降维,其次利用核独立分量分析从图像数据采样中提取高维度特征,最后基于自然图像统计特性对特征进行综合得出图像质量。实验结果表明所提方法与人的主观评价较为一致。