论文部分内容阅读
标记分布学习是在以标记分布标注的示例上学习的新型学习范式,近年来已成功应用于面部年龄估计、头部姿势估计和情感识别等实际场景中。在标记分布学习中,需要足够多的标记分布数据才能训练出预测性能好的模型。然而,标记分布学习有时会面临标记数据不足和注释成本太高的困境。基于边际概率分布匹配的主动标记分布学习(Active Label Distribution Learning Based on Marginal Probability Distribution Matching,ALDL-MMD)算法是针对标记分布学