论文部分内容阅读
提出一种改进决策1-SVM方法(1-DISVM),并由此构建了基于单类样本训练的1-DISVM多分类模型。1-DISVM是1-SVM方法的改进,通过对决策算法的修正,解决了1-SVM分类精度低的不足,并将其应用于直升机减速器故障识别中。结果表明该方法能够在训练样本数量少、不准确的情况下,自动排除错误样本的干扰,获得很好的分类结果,且具有无监督学习、分类精度高、易于扩展和代价小等优点。