论文部分内容阅读
针对单一特征的目标跟踪算法鲁棒性较差的情况,利用目标的多种观测信息通过D-S证据理论进行融合跟踪.在粒子滤波的总体框架下,嵌入Mean-Shift算法产生更加逼近真实后验分布的粒子,同时采用颜色和运动边缘特征作为观测模型,有效地避免了单一颜色特征在光照突变、姿态变化以及背景相似情况下的跟踪稳定性较差的问题.实验表明,该方法对于复杂条件下的目标跟踪具有较强的鲁棒性.