论文部分内容阅读
摘要[目的]筛选金花茶组培苗的最适生根培养条件。[方法]以金花茶组培苗为材料,研究不同激素处理、不同生根培养基、不同形态MW培养基对金花茶组培苗生根的影响。[结果]就促生根激素而言,500 mg/L IBA溶液浸泡处理效果较好,其生根率达82.5%,显著优于NAA;就基础培养基而言,MW培养基的生根效果更好,其生根率是1/2MS培养基的1.5倍;固体培养和滤纸桥液体培养同样都能诱导不定根产生,且生根率相当,不定根都较发达,侧根多。[结论]将金花茶无菌苗基部浸泡于500 mg/L IBA溶液后,转接于MW固体培养基进行生根培养,效果最好。
关键词金花茶;组培苗;不定根发生;生根率
中图分类号S603.6文献标识码A文章编号0517-6611(2016)10-157-03
Abstract[Objective] The aim was to screen out the optimal rooting conditions for Camellia nitidissima tissue culture plantlets. [Method] With C. nitidissima tissue culture plantlets as materials,effects of different hormone treatments,different rooting culture medium and different morphology MW medium on rooting of C. nitidissima tissue culture plantlets were studied. [Result] The results showed that for promoting rooting hormone,the effect of 500 mg/L IBA solution soaking treatment is better,its rooting rate is as high as 82.5%,significantly better than that of NAA; in terms of basic medium,MW rooting medium is better,the rooting rateis nearly 1.5 times than that of 1/2MS culture medium; solid cultivation and filter paper bridge liquid cultivation can both induce adventitious roots,and their rooting rates are nearly the same,both of them can induce many adventitious roots and lateral roots. [Conclusion] The rooting effect of soaking in 500 mg/L IBA solution and inoculating on MW culture medium is the best.
Key wordsCamellia nitidissima; Tissue culture plantlets; Adventitious rooting; Rooting rate
世紀60年代初,我国广西首次发现金花茶(Camellia nitidissima),其属山茶科山茶属金花茶组植物,是一种喜阴湿环境的常绿阔叶植物[1],被誉为“茶族皇后”以及“植物界的大熊猫”[2]。金花茶的花朵具有金黄色蜡质,因其含有特殊的黄色遗传基因,是培育黄色山茶新品种的重要遗传资源[3],被公认为是茶科植物中最珍贵的品种之一,已被引种到日本、澳大利亚及北美等地。近年来,金花茶因其具有较强的抗氧化能力和自由基清除能力而受到广泛关注[4]。
随着金花茶价值不断被开发利用,对金花茶苗木的需求量迅速增加,传统的育苗方法已无法满足市场需求,能在短期内实现大量繁殖的金花茶组织培养技术备受瞩目。虽然关于金花茶组培快繁已有一些研究,但对于木本植物而言,组织培养生根难度较大,无菌苗能否生根是组培快繁成功与否的关键[5]。笔者针对金花茶组培苗生根难的问题,探讨不同处理方法对金花茶组培苗生根的影响,以期获得金花茶无菌苗瓶内生根的最佳培养方法,为金花茶大规模生产提供理论依据。
1材料与方法
1.1材试验料供试材料为笔者前期试验获得的长势健壮、4~6 cm高的金花茶无菌苗。
1.2试验方法
1.2.1不同促生根激素处理。诱导生根培养基以MW培养基为基本培养基,其主要成分:KNO3 80 mg/L,Ca(NO3)2·4H2O 150 mg/L,MgSO4·7H2O 350 mg/L,NaH2PO4·H2O 100 mg/L,KCl 65 mg/L,Na2SO4 200 mg/L,KI 0.83 mg/L, H3BO3 6.2 mg/L, MnSO4·4H2O 22.3 mg/L, ZnSO4·7H2O 8.6 mg/L,Na2Mo4·H2O 0.025 mg/L, CuSO4·5H2O 0.025 mg/L, CoCl2·6H2O 0.025 mg/L, FeSO4·7H2O 27.8 mg/L, Na2 EDTA·7H2O 37.3 mg/L,维生素B1 1 mg/L,维生素B6 1 mg/L,烟酸1 mg/L, 肌醇 20 mg/L,甘氨酸 2 mg/L, 蔗糖20~40 g/L,琼脂 6~7 g/L。
处理方法1:先将金花茶无菌苗基部浸泡于500 mg/L IBA溶液中20 min,而后转接于生根培养基中进行生根培养。生根培养基以MW为基本培养基,添加蔗糖20 g/L和琼脂7 g/L,pH 5.8。处理方法2:将金花茶无菌苗直接转接至含有5 mg/L IBA的诱导生根培养基中,生根培养基以MW为基本培养基,附加5 mg/L IBA,20 g/L蔗糖,7 g/L琼脂,pH 5.8。处理方法3:将金花茶无菌苗直接转接至含有NAA的诱导生根培养基中,生根培养基以MW为基本培养基,分别附加2、4、8 mg/L NAA,20 g/L蔗糖,7 g/L琼脂,pH 5.8。 1.2.2不同培养基处理。将用500 mg/L IBA溶液浸泡基部20 min的金花茶无菌苗转接于2种诱导生根培养基中进行生根培养。2种诱导生根培养基分别以MW和1/2MS为基本培养基,同时添加蔗糖20 g/L和琼脂7 g/L,调整pH为5.8。MS培养基配方:除大量元素含量不同外,其他元素与MW培养基相同,大量元素含量:KNO3 1 900 mg/L,NH4NO3 1 650 mg/L, CaCl2·2H2O 440 mg/L ,MgSO4·7H2O 370 mg/L,KH2PO4 170 mg/L。 1/2MS培养基为MS的大量元素减半,其他成分不变。
1.2.3不同形态培养基接种处理。先将金花茶无菌苗基部浸泡于500 mg/L IBA溶液中20 min,而后转接于以下2种生根培养基中进行生根培养。固体培养基:以MW为基本培养基,附加蔗糖20 g/L和琼脂7 g/L,调整pH为5.8。滤纸桥液体:以MW为基本培养基,附加蔗糖20 g/L,调整pH为5.8。
1.3培养条件以上生根培养均在植物组培室采用日光灯照射进行光照培养,光照时间16 h/d,光照强度2 000~3 000 lx,温度(25±2)℃。接种培养后,统计不同处理金花茶组培苗的生根率,并观察记录组培苗的生长情况。为了确保试验结果的可靠性,每个处理至少50个重复。
2结果与分析
2.1不同激素处理对金花茶组培苗生根的影响接种培养42 d后,观察并统计不同激素处理的金花茶组培苗生根和生长情况,结果见表1和图1。由表1和图1可知,在5种不同处理中,浸泡500 mg/L IBA后转接于无激素的MW培养基的无菌苗生根率最高,达82.5%,且根系呈辐射状,不定根发达,侧根较多较长,组培苗生长健壮(图1A)。其次是培养基中添加5 mg/L IBA的处理,其生根率为35.6%,不定根短小且少,无菌苗长势良好(图1B)。培养基中添加NAA的处理效果均不佳,3种浓度的生根率均很低,基部均有愈伤组织产生,不定根短小,且均由愈伤组织上长出,组培苗长势较弱,叶子卷曲,严重的甚至脱落(图1C、D)。
2.2不同生根培养基对金花茶组培苗生根的影响将经5 mg/L IBA浸泡处理的金花茶无菌苗接种于不同生根培养基中,培养42 d后,观察并统计不同培养基上金花茶组培苗的生根和生长情况,结果见表2。由表2可知,MW培养基的生根效果较好,生根率为73.6%,是1/2MS培养基的1.5倍,且在MW培养基上组培苗长势更好,生长健壮,并有新叶长出,不定根均呈辐射状。
2.3不同形态MW培养基对金花茶组培苗生根的影响将经IBA浸泡处理的金花茶无菌苗分别接种于MW固体培养基和MW滤纸桥液体培养基,培养90 d后,观察并统计金花茶组培苗的生根和生长情况,结果见表3和图2。由表3和图2可知,MW培养基的形态对金花茶组培苗生根率影响较小,2种形态的培养基中金花茶组培苗生根率均在84.0%左右,根系呈辐射状,须根多且发达,生长健壮,但在液体培养基中,组培苗的不定根略多而长,且根系更粗壮发达。
3结论与讨论
金花茶组培苗不定根发生需要外源生长素的诱导,NAA和IBA是常用的生长素[6]。不同促生根激素处理试验结果表明,当生根处理激素采用NAA时,生长一段时间后,在培养基与外植体的接触面上易产生愈伤组织,叶子卷曲,严重时叶子脱落;而采用IBA浸泡处理生根效果好,且组培苗长势好。因此,对于金花茶而言,IBA的促生根效果显著优于NAA,同时高浓度IBA短时间浸泡处理的效果显著优于将其直接添加到培养基中。这与庄承纪等[7]、梁盛业等[8]的研究结果一致。
山茶科植物组织培养在固体培养基上生根较困难,在以往的生根试验中多采用滤纸桥液体生根[10]。该试验结果表明,只要培养基选择适当,激素配比合适,在固体培养基上同样可以生根,根系发达,生根率与滤纸桥液体培养相当;滤纸桥液体培养的根系较粗壮,但优势不明显,且滤纸桥法操作繁琐,不利于普及推广,以采用固体培养生根为宜。
参考文献
[1] 韦霄,蒋运生,韦记青,等.珍稀濒危植物金花茶地理分布与生境调查研究[J].生态环境,2007,16(3):895-899.
[2] 梁盛业.金花茶[M].北京:中国林业出版社,1993.
[3] 刘林.世界珍稀观赏植物金花茶[J].广西林业科学,1997,28(2):94-96.
[4] L J F,CHEN R,ZHANG M H,et al.Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi[J].J Plant Physiol,2013,170:1202– 1211.
[5] 龚一富.植物组织培养实验指导[M].北京:科学出版社,2011.
[6] 沈海龙.树木组织培养微枝试管外生根育苗技术[M].北京:中国林业出版社,2009.
[7] 庄承纪,周建葵.云南山茶茎尖培养中多芽体的形成和生根的研究[J].实验生物学报,1997,30(1):1-11.
[8] 梁盛业,陆敏珠.中国金花茶栽培与开发利用[M].北京:中国林业出版社,2005.
[9] 黃晓娜,叶品明,黄连冬,等.金花茶组培苗试管外生根研究[J].安徽农业科学,2014(18):5751-5752.
[10] 袁学军,王志勇.植物组织培养[M].北京:北京师范大学出版社,2011.
44卷10期李桂娥等不同处理方法对金花茶组培苗不定根发生的影响 (上接第156页)
[15] BORNHOLDT Z A,PRASAD B V.Xray structure of NS1 from a highly pathogenic H5N1 influenza virus [J].Nature,2008,456(7224):985-988.
[16] XIA S,MONZINGO A F,ROBERTUS J D.Structure of NS1A effector domain from the influenza A /Udorn/72 virus[J].Acta Crystallogr D Biol Crystallogr,2009,65(1):11-17.
[17] 李建麗,张万坡,毕丁仁.A型流感病毒NS1蛋白研究进展[J].微生物学报,2007,47(4):729-733.
[18] DAS K,MA L C,XIAO R,et al.Structural basis for suppression of a host antiviral response by influenza A virus[J].ProcNatl Acad Sci USA,2008,105(35):13093-13098.
[19] LU Y M,WAMBACH M G,KATZE M,et al.Binding of the influenza virus NS1protein to double- stranded RNA inhibits the activation of the protein kinase that phosphorylates the eIF2 translation initiation factor[J].Virology,1995,214:222.
[20] TAN S L,KATZE M.Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon- induced PKR protein kinase[J].J Interferon Cytokine Res,1998,18:757.
[21] ABRAHAM N D F,STOJDL P I,DUNCAN N,et al.Characterization of transgenic mice with targeted disruption of the catalytic domain of the doublestranded RNAdependent protein kinase,PKR[J].J Biol Chem,1999,274:5953.
[22] NEMEROFF M E,BARABINO S M,LI Y,et al.Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3,end formation of cellular premRNAs[J].Mol Cell,1988,1(7):991-1000.
[23] CHEN Z,LI Y,KRUG R M.Influenza A virus NS1 protein targets poly(A)-binding protein Ⅱ of the cellular 39-end processing machinery[J].EMBO J,1999,18(8):2273-2283.
[24] WOLFF T,O′NEILL R E,PALESE P.NS1-binding protein(NS1-BP):A novel human protein that interacts with the influenza A virus nonstructural NS1 protein is delocalized in the nuclei of infected cells[J].Journal of virology,1998,72(9):7170-7180.
[25] ZHIRNOV O P,KONAKOVA T E,WOLFF T,et al.NS1 protein of influenza A virus downregulates apoptosis[J].J Virol,2002,76(4):1617-1625.
[26] EHRHARD T C,WOLFF T,PLESCHKA S,et al.The influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses[J].J Virol,2007,81(7):3058-3067.
[27] SMITH E J,MARI I,PRAKASH A,et al.IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IkappB kinase but is blocked by vaccinia virus E3L protein[J].J Biol Chem,2001,276(12):8951-8957.
[28] FERNANDEZSESMA A,SVETLANA M,BARBARA J E,et al.Influenza virus evades innate and adaptive immunity via the NS1 protein[J].J Virol,2006,80(13):6295-6304.
[29] JULKUNEN I,SARENEVA T,PIRHONEN J,et al.Molecular pathogenesis of Influenza a virus infection and virus- induced regulation of cytokine gene expression[J].Cytokine Growth Factor Rev,2001,12:171.
[30] FALCN A,FORTES P,MARIN R M.Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro[J].Nucleic Acids Res,1999,7(11):2241-2247.
[31] WOLFF T,O′NEILL R E,PALESE P.Interaction cloning of NS1-I,a human protein that binds to the nonstructural NS1 proteins of influenza A and B viruses[J].J Virol,1996,70(8):5363-5372.安徽农业科学,Journal of Anhui Agri. Sci.2016,44(10):160-162,186
责任编辑陈玉敏
关键词金花茶;组培苗;不定根发生;生根率
中图分类号S603.6文献标识码A文章编号0517-6611(2016)10-157-03
Abstract[Objective] The aim was to screen out the optimal rooting conditions for Camellia nitidissima tissue culture plantlets. [Method] With C. nitidissima tissue culture plantlets as materials,effects of different hormone treatments,different rooting culture medium and different morphology MW medium on rooting of C. nitidissima tissue culture plantlets were studied. [Result] The results showed that for promoting rooting hormone,the effect of 500 mg/L IBA solution soaking treatment is better,its rooting rate is as high as 82.5%,significantly better than that of NAA; in terms of basic medium,MW rooting medium is better,the rooting rateis nearly 1.5 times than that of 1/2MS culture medium; solid cultivation and filter paper bridge liquid cultivation can both induce adventitious roots,and their rooting rates are nearly the same,both of them can induce many adventitious roots and lateral roots. [Conclusion] The rooting effect of soaking in 500 mg/L IBA solution and inoculating on MW culture medium is the best.
Key wordsCamellia nitidissima; Tissue culture plantlets; Adventitious rooting; Rooting rate
世紀60年代初,我国广西首次发现金花茶(Camellia nitidissima),其属山茶科山茶属金花茶组植物,是一种喜阴湿环境的常绿阔叶植物[1],被誉为“茶族皇后”以及“植物界的大熊猫”[2]。金花茶的花朵具有金黄色蜡质,因其含有特殊的黄色遗传基因,是培育黄色山茶新品种的重要遗传资源[3],被公认为是茶科植物中最珍贵的品种之一,已被引种到日本、澳大利亚及北美等地。近年来,金花茶因其具有较强的抗氧化能力和自由基清除能力而受到广泛关注[4]。
随着金花茶价值不断被开发利用,对金花茶苗木的需求量迅速增加,传统的育苗方法已无法满足市场需求,能在短期内实现大量繁殖的金花茶组织培养技术备受瞩目。虽然关于金花茶组培快繁已有一些研究,但对于木本植物而言,组织培养生根难度较大,无菌苗能否生根是组培快繁成功与否的关键[5]。笔者针对金花茶组培苗生根难的问题,探讨不同处理方法对金花茶组培苗生根的影响,以期获得金花茶无菌苗瓶内生根的最佳培养方法,为金花茶大规模生产提供理论依据。
1材料与方法
1.1材试验料供试材料为笔者前期试验获得的长势健壮、4~6 cm高的金花茶无菌苗。
1.2试验方法
1.2.1不同促生根激素处理。诱导生根培养基以MW培养基为基本培养基,其主要成分:KNO3 80 mg/L,Ca(NO3)2·4H2O 150 mg/L,MgSO4·7H2O 350 mg/L,NaH2PO4·H2O 100 mg/L,KCl 65 mg/L,Na2SO4 200 mg/L,KI 0.83 mg/L, H3BO3 6.2 mg/L, MnSO4·4H2O 22.3 mg/L, ZnSO4·7H2O 8.6 mg/L,Na2Mo4·H2O 0.025 mg/L, CuSO4·5H2O 0.025 mg/L, CoCl2·6H2O 0.025 mg/L, FeSO4·7H2O 27.8 mg/L, Na2 EDTA·7H2O 37.3 mg/L,维生素B1 1 mg/L,维生素B6 1 mg/L,烟酸1 mg/L, 肌醇 20 mg/L,甘氨酸 2 mg/L, 蔗糖20~40 g/L,琼脂 6~7 g/L。
处理方法1:先将金花茶无菌苗基部浸泡于500 mg/L IBA溶液中20 min,而后转接于生根培养基中进行生根培养。生根培养基以MW为基本培养基,添加蔗糖20 g/L和琼脂7 g/L,pH 5.8。处理方法2:将金花茶无菌苗直接转接至含有5 mg/L IBA的诱导生根培养基中,生根培养基以MW为基本培养基,附加5 mg/L IBA,20 g/L蔗糖,7 g/L琼脂,pH 5.8。处理方法3:将金花茶无菌苗直接转接至含有NAA的诱导生根培养基中,生根培养基以MW为基本培养基,分别附加2、4、8 mg/L NAA,20 g/L蔗糖,7 g/L琼脂,pH 5.8。 1.2.2不同培养基处理。将用500 mg/L IBA溶液浸泡基部20 min的金花茶无菌苗转接于2种诱导生根培养基中进行生根培养。2种诱导生根培养基分别以MW和1/2MS为基本培养基,同时添加蔗糖20 g/L和琼脂7 g/L,调整pH为5.8。MS培养基配方:除大量元素含量不同外,其他元素与MW培养基相同,大量元素含量:KNO3 1 900 mg/L,NH4NO3 1 650 mg/L, CaCl2·2H2O 440 mg/L ,MgSO4·7H2O 370 mg/L,KH2PO4 170 mg/L。 1/2MS培养基为MS的大量元素减半,其他成分不变。
1.2.3不同形态培养基接种处理。先将金花茶无菌苗基部浸泡于500 mg/L IBA溶液中20 min,而后转接于以下2种生根培养基中进行生根培养。固体培养基:以MW为基本培养基,附加蔗糖20 g/L和琼脂7 g/L,调整pH为5.8。滤纸桥液体:以MW为基本培养基,附加蔗糖20 g/L,调整pH为5.8。
1.3培养条件以上生根培养均在植物组培室采用日光灯照射进行光照培养,光照时间16 h/d,光照强度2 000~3 000 lx,温度(25±2)℃。接种培养后,统计不同处理金花茶组培苗的生根率,并观察记录组培苗的生长情况。为了确保试验结果的可靠性,每个处理至少50个重复。
2结果与分析
2.1不同激素处理对金花茶组培苗生根的影响接种培养42 d后,观察并统计不同激素处理的金花茶组培苗生根和生长情况,结果见表1和图1。由表1和图1可知,在5种不同处理中,浸泡500 mg/L IBA后转接于无激素的MW培养基的无菌苗生根率最高,达82.5%,且根系呈辐射状,不定根发达,侧根较多较长,组培苗生长健壮(图1A)。其次是培养基中添加5 mg/L IBA的处理,其生根率为35.6%,不定根短小且少,无菌苗长势良好(图1B)。培养基中添加NAA的处理效果均不佳,3种浓度的生根率均很低,基部均有愈伤组织产生,不定根短小,且均由愈伤组织上长出,组培苗长势较弱,叶子卷曲,严重的甚至脱落(图1C、D)。
2.2不同生根培养基对金花茶组培苗生根的影响将经5 mg/L IBA浸泡处理的金花茶无菌苗接种于不同生根培养基中,培养42 d后,观察并统计不同培养基上金花茶组培苗的生根和生长情况,结果见表2。由表2可知,MW培养基的生根效果较好,生根率为73.6%,是1/2MS培养基的1.5倍,且在MW培养基上组培苗长势更好,生长健壮,并有新叶长出,不定根均呈辐射状。
2.3不同形态MW培养基对金花茶组培苗生根的影响将经IBA浸泡处理的金花茶无菌苗分别接种于MW固体培养基和MW滤纸桥液体培养基,培养90 d后,观察并统计金花茶组培苗的生根和生长情况,结果见表3和图2。由表3和图2可知,MW培养基的形态对金花茶组培苗生根率影响较小,2种形态的培养基中金花茶组培苗生根率均在84.0%左右,根系呈辐射状,须根多且发达,生长健壮,但在液体培养基中,组培苗的不定根略多而长,且根系更粗壮发达。
3结论与讨论
金花茶组培苗不定根发生需要外源生长素的诱导,NAA和IBA是常用的生长素[6]。不同促生根激素处理试验结果表明,当生根处理激素采用NAA时,生长一段时间后,在培养基与外植体的接触面上易产生愈伤组织,叶子卷曲,严重时叶子脱落;而采用IBA浸泡处理生根效果好,且组培苗长势好。因此,对于金花茶而言,IBA的促生根效果显著优于NAA,同时高浓度IBA短时间浸泡处理的效果显著优于将其直接添加到培养基中。这与庄承纪等[7]、梁盛业等[8]的研究结果一致。
山茶科植物组织培养在固体培养基上生根较困难,在以往的生根试验中多采用滤纸桥液体生根[10]。该试验结果表明,只要培养基选择适当,激素配比合适,在固体培养基上同样可以生根,根系发达,生根率与滤纸桥液体培养相当;滤纸桥液体培养的根系较粗壮,但优势不明显,且滤纸桥法操作繁琐,不利于普及推广,以采用固体培养生根为宜。
参考文献
[1] 韦霄,蒋运生,韦记青,等.珍稀濒危植物金花茶地理分布与生境调查研究[J].生态环境,2007,16(3):895-899.
[2] 梁盛业.金花茶[M].北京:中国林业出版社,1993.
[3] 刘林.世界珍稀观赏植物金花茶[J].广西林业科学,1997,28(2):94-96.
[4] L J F,CHEN R,ZHANG M H,et al.Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima Chi[J].J Plant Physiol,2013,170:1202– 1211.
[5] 龚一富.植物组织培养实验指导[M].北京:科学出版社,2011.
[6] 沈海龙.树木组织培养微枝试管外生根育苗技术[M].北京:中国林业出版社,2009.
[7] 庄承纪,周建葵.云南山茶茎尖培养中多芽体的形成和生根的研究[J].实验生物学报,1997,30(1):1-11.
[8] 梁盛业,陆敏珠.中国金花茶栽培与开发利用[M].北京:中国林业出版社,2005.
[9] 黃晓娜,叶品明,黄连冬,等.金花茶组培苗试管外生根研究[J].安徽农业科学,2014(18):5751-5752.
[10] 袁学军,王志勇.植物组织培养[M].北京:北京师范大学出版社,2011.
44卷10期李桂娥等不同处理方法对金花茶组培苗不定根发生的影响 (上接第156页)
[15] BORNHOLDT Z A,PRASAD B V.Xray structure of NS1 from a highly pathogenic H5N1 influenza virus [J].Nature,2008,456(7224):985-988.
[16] XIA S,MONZINGO A F,ROBERTUS J D.Structure of NS1A effector domain from the influenza A /Udorn/72 virus[J].Acta Crystallogr D Biol Crystallogr,2009,65(1):11-17.
[17] 李建麗,张万坡,毕丁仁.A型流感病毒NS1蛋白研究进展[J].微生物学报,2007,47(4):729-733.
[18] DAS K,MA L C,XIAO R,et al.Structural basis for suppression of a host antiviral response by influenza A virus[J].ProcNatl Acad Sci USA,2008,105(35):13093-13098.
[19] LU Y M,WAMBACH M G,KATZE M,et al.Binding of the influenza virus NS1protein to double- stranded RNA inhibits the activation of the protein kinase that phosphorylates the eIF2 translation initiation factor[J].Virology,1995,214:222.
[20] TAN S L,KATZE M.Biochemical and genetic evidence for complex formation between the influenza A virus NS1 protein and the interferon- induced PKR protein kinase[J].J Interferon Cytokine Res,1998,18:757.
[21] ABRAHAM N D F,STOJDL P I,DUNCAN N,et al.Characterization of transgenic mice with targeted disruption of the catalytic domain of the doublestranded RNAdependent protein kinase,PKR[J].J Biol Chem,1999,274:5953.
[22] NEMEROFF M E,BARABINO S M,LI Y,et al.Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3,end formation of cellular premRNAs[J].Mol Cell,1988,1(7):991-1000.
[23] CHEN Z,LI Y,KRUG R M.Influenza A virus NS1 protein targets poly(A)-binding protein Ⅱ of the cellular 39-end processing machinery[J].EMBO J,1999,18(8):2273-2283.
[24] WOLFF T,O′NEILL R E,PALESE P.NS1-binding protein(NS1-BP):A novel human protein that interacts with the influenza A virus nonstructural NS1 protein is delocalized in the nuclei of infected cells[J].Journal of virology,1998,72(9):7170-7180.
[25] ZHIRNOV O P,KONAKOVA T E,WOLFF T,et al.NS1 protein of influenza A virus downregulates apoptosis[J].J Virol,2002,76(4):1617-1625.
[26] EHRHARD T C,WOLFF T,PLESCHKA S,et al.The influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses[J].J Virol,2007,81(7):3058-3067.
[27] SMITH E J,MARI I,PRAKASH A,et al.IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or IkappB kinase but is blocked by vaccinia virus E3L protein[J].J Biol Chem,2001,276(12):8951-8957.
[28] FERNANDEZSESMA A,SVETLANA M,BARBARA J E,et al.Influenza virus evades innate and adaptive immunity via the NS1 protein[J].J Virol,2006,80(13):6295-6304.
[29] JULKUNEN I,SARENEVA T,PIRHONEN J,et al.Molecular pathogenesis of Influenza a virus infection and virus- induced regulation of cytokine gene expression[J].Cytokine Growth Factor Rev,2001,12:171.
[30] FALCN A,FORTES P,MARIN R M.Interaction of influenza virus NS1 protein and the human homologue of Staufen in vivo and in vitro[J].Nucleic Acids Res,1999,7(11):2241-2247.
[31] WOLFF T,O′NEILL R E,PALESE P.Interaction cloning of NS1-I,a human protein that binds to the nonstructural NS1 proteins of influenza A and B viruses[J].J Virol,1996,70(8):5363-5372.安徽农业科学,Journal of Anhui Agri. Sci.2016,44(10):160-162,186
责任编辑陈玉敏