论文部分内容阅读
摘 要:本文选用半导体激光泵浦模块,采用单程放大技术,研制了一台输出功率大于200W,清洗速度达到50cm2/秒的大功率激光清洗设备。详细介绍了该型大功率激光清洗设备的激光器及电气控制设计方案,并对该型设备的各项性能进行了详细的测试。
关键词:大功率 激光清洗设备
一、引言
激光清洗是一种新型激光表面处理技术。它是利用高能激光束照射工件表面,使表面的污物、锈斑或涂层发生瞬间蒸发或剥离,高速有效地清除对象表面附着物或表面涂层,从而达到清洁材料表面的工艺过程[1]。其不需要清洁液或其它化学溶液,清除污物的范围和适用的基材范围广泛,清洗的过程不损伤基材表面,因此它与传统的化学清洗、机械刷磨、流体颗粒冲刷、超声波清洗等相比具有独特的优越性,所以在许多领域成为不可替代的技术。是一种“绿色”的清洗技术[2-3]。
现阶段大功率激光清洗设备主要由国外厂商生产,如德国CleanLaser公司,美国USHIO公司等,他们主要采用光纤耦合技术获得大功率激光输出。由于国内光纤耦合技术的限制,使得国内激光清洗设备的输出功率一般在100W以下,无法满足工业加工的需要。本文根据市场对大功率激光清洗设备的实际需求,选用半导体激光泵浦模块,采用单程放大技术,研制了一台输出功率大于200W,清洗速度达到50cm2/秒的大功率激光清洗设备。填补了国内大功率工业级激光清洗设备的空白,该设备可应用于轮胎模具、锈蚀金属板等工业清洗领域。
二、大功率激光清洗设备组成
大功率清洗设备主要包括电气控制机柜、激光器组件和加工头三部分,电气控制机柜包括:冷却系统、控制机箱、半导体泵浦电源、声光Q驱动电源;激光器组件包括:激光谐振腔、声光Q开关、半导体泵浦模块、扩束镜等;加工头包括:扫描振镜、振镜驱动电路。加工头通过导光臂安装在激光器上。设备组成实物图如图1。
激光器组件采用半导体泵浦模块作为泵浦源,由声光Q开关调Q实现高频脉冲激光输出,脉冲激光束通过高速扫描振镜的扫描,并由聚焦镜聚焦,使激光束形成一定宽度的线状光斑,光斑实际上是由高频脉冲光点扫描形成。此线状光斑作用在待加工工件表面,表面附着的污垢被高能激光冲击脱落并通过吸尘器收集产生的粉尘,从而达到去除污染物的目的。
其功能组成框图如图2。
系统供电采用三相380V供电,分别给低压供电单元、泵浦模块电源(一)、泵浦模块电源(二)、冷却系统以及声光Q驱动供电,综合控制系统控制泵浦模块电源(一)、(二)的输出电流、激光调制频率以及振镜扫描参数,同时提供系统参数设置及显示。冷却系统为激光器提供冷却循环水,对激光器泵浦模块和声光Q开关进行制冷。设备保护气采用工业压缩空气,通过油水分离,去除杂质并进行干燥对加工头激光镜片进行吹气保护。
三、激光器组件方案设计
激光器组件是设备的核心部件,为了获得大功率激光输出,本文采用本振加放大的光路设计来提高激光输出功率。激光器组件组成部分包括两个半导体泵浦模块、两个单头声光Q开关、全反镜、输出镜扩束镜等,激光器通水冷却。激光光路示意图如图3。
图中全反镜M1和输出镜M2组成本振级激光谐振腔,为了提高激光输出功率,我们采用单程放大技术,在本振激光器中本振激光经过放大级放大输出,光路中的两个声光Q开关对半导体模块产生的连续激光进行调制,输出高峰值功率脉冲激光,采用两个Q开关能大大提高锁光能力,因此能得到更高单脉冲能量激光。为方便观察,在激光器光路上增加红光指示,红光指示与激光输出光路同轴。由于半导体泵浦模块容易结露导致Bar条端面损坏,因此激光器需要放置在干燥的环境中,设计中将激光器部分进行气密设计,并放入干燥剂。激光器输出窗口加装保护玻璃。激光束通过聚焦镜聚焦入射到振镜,振镜高速扫描使激光束作用于待加工对象,实现激光清洗。
四、电气控制方案设计
激光清洗设备电气采用模块化设计,各部分模块包括:激光冷水机、泵浦模块电源、声光Q开关驱动电源以及综合控制单元。综合控制单元对各部分模块进行控制,同时综合控制单元还控制扫描振镜工作。
激光冷水机供电要求为AC220V,清洗设备输入电源为三相电,用其中一相为冷水机提供电源。
泵浦模块电源有两个,供电均为AC220V,控制接口包括电源输出控制、电流大小设置以及电源故障状态。
声光Q开关驱动电源提供两路射频输出和一个控制接口,射频输出分别接Q开关,控制接口由综合控制单元I/O控制射频输出使能和射频信号调制频率。
综合控制系统实现对泵浦电源、声光Q开关驱动、扫描振镜控制信号、冷却系统等各单元的综合控制,并提供工业控制接口和人机操控界面。
采用单片机嵌入式系统设计,主要功能是控制系统加电顺序,调节模块泵浦电源电流输出,以此控制激光器输出功率,同时还需要控制高速扫描振镜的扫描速度和角度。实现用户输入输出接口等功能,。系统包括参数设置、键盘输入、显示界面等。监控系统状态,包括水流监控、Q开关温度监控、电源状态等。同时提供对外控制接口,接口控制采用RS-422串口设计。
综合控制单元功能框图如图4所示。
五、调试及性能测试
首先对单个泵浦模块加激光谐振腔组成的本振激光器进行静态调试,测量输入电流和激光输出功率关系,测试表明激光输出功率与输入电流成正比关系。
在本振激光光路中全反镜与泵浦模块之间放入一个声光Q开关进行关门调试,调整好声光Q开关与光路的准直后,在仔细微调声光Q开关,并在Q开关加上射频信号,激光器内由于声光晶体在超声波衍射效应下腔内损耗增大,激光器处于关门状态,测得在单个Q开关最大关门电流时,插入声光Q开光后激光器的连续输出功率为85W,即单个声光Q可以关住85W的连续激光。
同样,在输出镜和泵浦模块之间放入一个声光Q开关,以类似的调试方法测试一个声光Q开关关门效果,测试结果与前一个关门效果相当。
当两个声光Q开关同时放入本振激光器光路中,且按特定角度放置,仔细调整Q开光在光路中的位置,使其达到最好的关门效果时,激光器连续输出功率为205W,可见,采用两个声光Q开关按特定角度放置进行关门比一个Q开关提高一倍多。
设备部件调试完成后,进行了三天约20小时连续工作拷机实验,实验前测得输出激光功率为245W,拷机完成后对激光输出功率复测,为248W,考虑到激光功率计测量误差,可以看出激光器输出功率基本没有下降。随后进行了测试实验,主要针对激光器输出功率、调制频率、激光加工时扫描角度进行实验,最终性能测试结果如表1。
六、结论
本文针对市场对大功率激光清洗设备的需求,采用本振激光加一级放大来实现高功率静态激光输出,同时采用双声光调Q设计,实现高峰值功率脉冲激光输出。最终研制了一台输出功率大于200W,清除速度达到50cm2/秒的大功率激光清洗设备。经过长时间的高强度连续拷机验证,设备完全满足工业级生产需要。改型设备填补了国内大功率工业级激光清洗设备的空白,同时该型设备还可广泛应用于石材、金属等物体表面的污垢、锈迹、油漆以及溶剂残留物的清洗。
参考文献
[1] 宋峰,邹万芳,刘淑静等。激光清洗微电子元件[J].清洗时间,2006,22(1):38-25.
[2] 叶亚云。光学元件表明的激光清洗技术研究[D].中国工程物理研究院学位论文,2010.
[3] 张魁武。物体表面的激光清洗技术[J].世界制造技术与装备市场,2007,(3):84-89.
关键词:大功率 激光清洗设备
一、引言
激光清洗是一种新型激光表面处理技术。它是利用高能激光束照射工件表面,使表面的污物、锈斑或涂层发生瞬间蒸发或剥离,高速有效地清除对象表面附着物或表面涂层,从而达到清洁材料表面的工艺过程[1]。其不需要清洁液或其它化学溶液,清除污物的范围和适用的基材范围广泛,清洗的过程不损伤基材表面,因此它与传统的化学清洗、机械刷磨、流体颗粒冲刷、超声波清洗等相比具有独特的优越性,所以在许多领域成为不可替代的技术。是一种“绿色”的清洗技术[2-3]。
现阶段大功率激光清洗设备主要由国外厂商生产,如德国CleanLaser公司,美国USHIO公司等,他们主要采用光纤耦合技术获得大功率激光输出。由于国内光纤耦合技术的限制,使得国内激光清洗设备的输出功率一般在100W以下,无法满足工业加工的需要。本文根据市场对大功率激光清洗设备的实际需求,选用半导体激光泵浦模块,采用单程放大技术,研制了一台输出功率大于200W,清洗速度达到50cm2/秒的大功率激光清洗设备。填补了国内大功率工业级激光清洗设备的空白,该设备可应用于轮胎模具、锈蚀金属板等工业清洗领域。
二、大功率激光清洗设备组成
大功率清洗设备主要包括电气控制机柜、激光器组件和加工头三部分,电气控制机柜包括:冷却系统、控制机箱、半导体泵浦电源、声光Q驱动电源;激光器组件包括:激光谐振腔、声光Q开关、半导体泵浦模块、扩束镜等;加工头包括:扫描振镜、振镜驱动电路。加工头通过导光臂安装在激光器上。设备组成实物图如图1。
激光器组件采用半导体泵浦模块作为泵浦源,由声光Q开关调Q实现高频脉冲激光输出,脉冲激光束通过高速扫描振镜的扫描,并由聚焦镜聚焦,使激光束形成一定宽度的线状光斑,光斑实际上是由高频脉冲光点扫描形成。此线状光斑作用在待加工工件表面,表面附着的污垢被高能激光冲击脱落并通过吸尘器收集产生的粉尘,从而达到去除污染物的目的。
其功能组成框图如图2。
系统供电采用三相380V供电,分别给低压供电单元、泵浦模块电源(一)、泵浦模块电源(二)、冷却系统以及声光Q驱动供电,综合控制系统控制泵浦模块电源(一)、(二)的输出电流、激光调制频率以及振镜扫描参数,同时提供系统参数设置及显示。冷却系统为激光器提供冷却循环水,对激光器泵浦模块和声光Q开关进行制冷。设备保护气采用工业压缩空气,通过油水分离,去除杂质并进行干燥对加工头激光镜片进行吹气保护。
三、激光器组件方案设计
激光器组件是设备的核心部件,为了获得大功率激光输出,本文采用本振加放大的光路设计来提高激光输出功率。激光器组件组成部分包括两个半导体泵浦模块、两个单头声光Q开关、全反镜、输出镜扩束镜等,激光器通水冷却。激光光路示意图如图3。
图中全反镜M1和输出镜M2组成本振级激光谐振腔,为了提高激光输出功率,我们采用单程放大技术,在本振激光器中本振激光经过放大级放大输出,光路中的两个声光Q开关对半导体模块产生的连续激光进行调制,输出高峰值功率脉冲激光,采用两个Q开关能大大提高锁光能力,因此能得到更高单脉冲能量激光。为方便观察,在激光器光路上增加红光指示,红光指示与激光输出光路同轴。由于半导体泵浦模块容易结露导致Bar条端面损坏,因此激光器需要放置在干燥的环境中,设计中将激光器部分进行气密设计,并放入干燥剂。激光器输出窗口加装保护玻璃。激光束通过聚焦镜聚焦入射到振镜,振镜高速扫描使激光束作用于待加工对象,实现激光清洗。
四、电气控制方案设计
激光清洗设备电气采用模块化设计,各部分模块包括:激光冷水机、泵浦模块电源、声光Q开关驱动电源以及综合控制单元。综合控制单元对各部分模块进行控制,同时综合控制单元还控制扫描振镜工作。
激光冷水机供电要求为AC220V,清洗设备输入电源为三相电,用其中一相为冷水机提供电源。
泵浦模块电源有两个,供电均为AC220V,控制接口包括电源输出控制、电流大小设置以及电源故障状态。
声光Q开关驱动电源提供两路射频输出和一个控制接口,射频输出分别接Q开关,控制接口由综合控制单元I/O控制射频输出使能和射频信号调制频率。
综合控制系统实现对泵浦电源、声光Q开关驱动、扫描振镜控制信号、冷却系统等各单元的综合控制,并提供工业控制接口和人机操控界面。
采用单片机嵌入式系统设计,主要功能是控制系统加电顺序,调节模块泵浦电源电流输出,以此控制激光器输出功率,同时还需要控制高速扫描振镜的扫描速度和角度。实现用户输入输出接口等功能,。系统包括参数设置、键盘输入、显示界面等。监控系统状态,包括水流监控、Q开关温度监控、电源状态等。同时提供对外控制接口,接口控制采用RS-422串口设计。
综合控制单元功能框图如图4所示。
五、调试及性能测试
首先对单个泵浦模块加激光谐振腔组成的本振激光器进行静态调试,测量输入电流和激光输出功率关系,测试表明激光输出功率与输入电流成正比关系。
在本振激光光路中全反镜与泵浦模块之间放入一个声光Q开关进行关门调试,调整好声光Q开关与光路的准直后,在仔细微调声光Q开关,并在Q开关加上射频信号,激光器内由于声光晶体在超声波衍射效应下腔内损耗增大,激光器处于关门状态,测得在单个Q开关最大关门电流时,插入声光Q开光后激光器的连续输出功率为85W,即单个声光Q可以关住85W的连续激光。
同样,在输出镜和泵浦模块之间放入一个声光Q开关,以类似的调试方法测试一个声光Q开关关门效果,测试结果与前一个关门效果相当。
当两个声光Q开关同时放入本振激光器光路中,且按特定角度放置,仔细调整Q开光在光路中的位置,使其达到最好的关门效果时,激光器连续输出功率为205W,可见,采用两个声光Q开关按特定角度放置进行关门比一个Q开关提高一倍多。
设备部件调试完成后,进行了三天约20小时连续工作拷机实验,实验前测得输出激光功率为245W,拷机完成后对激光输出功率复测,为248W,考虑到激光功率计测量误差,可以看出激光器输出功率基本没有下降。随后进行了测试实验,主要针对激光器输出功率、调制频率、激光加工时扫描角度进行实验,最终性能测试结果如表1。
六、结论
本文针对市场对大功率激光清洗设备的需求,采用本振激光加一级放大来实现高功率静态激光输出,同时采用双声光调Q设计,实现高峰值功率脉冲激光输出。最终研制了一台输出功率大于200W,清除速度达到50cm2/秒的大功率激光清洗设备。经过长时间的高强度连续拷机验证,设备完全满足工业级生产需要。改型设备填补了国内大功率工业级激光清洗设备的空白,同时该型设备还可广泛应用于石材、金属等物体表面的污垢、锈迹、油漆以及溶剂残留物的清洗。
参考文献
[1] 宋峰,邹万芳,刘淑静等。激光清洗微电子元件[J].清洗时间,2006,22(1):38-25.
[2] 叶亚云。光学元件表明的激光清洗技术研究[D].中国工程物理研究院学位论文,2010.
[3] 张魁武。物体表面的激光清洗技术[J].世界制造技术与装备市场,2007,(3):84-89.