论文部分内容阅读
粒子群优化算法的收敛速度较慢、精度较低、稳定性欠佳。为此,提出一种基于适应度反馈作用的改进粒子群优化算法。在运行过程中,根据粒子相邻2次迭代的适应度变化,对适应度变化值归一化处理后,将其反馈给惯性权重,以削弱粒子寻优过程中的适应度振荡幅度,增强粒子群跳出局部最优的能力。测试结果表明,该算法的全局搜索能力得到提高,具有较高的收敛速度和稳定性。