论文部分内容阅读
目的研究拟黑多刺蚁乙醇提取物(EEPR)中降低高尿酸血症模型小鼠血清尿酸水平的活性部位及其主要化学成分。方法昆明小鼠分别ig给予别嘌醇0.04 g.kg-1(阳性对照),EEPR 0.128,0.256和0.512 g.kg-1,EEPR的石油醚部位0.079和0.158 g.kg-1,乙酸乙酯部位0.051和0.102 g.kg-1,正丁醇部位0.052和0.104 g.kg-1和水部位0.042和0.084 g.kg-1,每天1次,连续12 d。正常对照组和模型对照组ig给予等体积含0.3%吐温-80的水溶液。末次给药1 h后除正常对照组外,其余各组小鼠均ip给予次黄嘌呤0.6 g.kg-1。1 h后眼眶静脉丛取血,用磷钨酸比色法测定血清尿酸水平,酶比色法测定黄嘌呤氧化酶活性。对降低血清尿酸水平的活性部位进行GC-MS分析,鉴定其主要化学成分。结果高尿酸血症模型小鼠血清尿酸水平与正常对照组比较明显升高(P<0.01),别嘌醇0.04 g.kg-1,EEPR 0.256和0.512 g.kg-1可明显降低该模型小鼠血清尿酸水平(P<0.05),分别由模型组的(464±143)μmol.L-1下降到273±80,346±85和(302±72)μmo.l L-1(P<0.05)。EEPR中石油醚部位0.079和0.158 g.kg-1可显著降低该模型小鼠血清尿酸水平,分别由模型组的(446±139)μmo.lL-1下降到328±100和(314±112)μmol.L-1(P<0.05),其他部位各剂量组对血清尿酸水平均无明显影响。石油醚部位0.158 g.kg-1可明显抑制黄嘌呤氧化酶活性,由模型对照组的(18±8)U.L-1下降到(11±5)U.L-1(P<0.05)。GC-MS分析结果表明,石油醚部位的脂肪酸中,反式十八碳烯酸甲酯占60.77%,十六烷酸甲酯占18.99%,十六碳烯酸甲酯占9.31%。结论 EEPR中石油醚部位可降低高尿酸血症模型小鼠血清尿酸水平,不饱和脂肪酸为石油醚部位脂肪酸的主要成分。
Objective To study the active site and its main chemical components in the serum uric acid of mice with hyperuricemia induced by ethanol extract of Prickly Pear (EEPR). Methods Kunming mice were treated with allopurinol 0.04 g.kg-1 (positive control), EEPR 0.128, 0.256 and 0.512 g.kg-1, respectively. The petroleum ether fraction of EEPR was 0.079 and 0.158 g.kg-1, 0.051 and 0.102 g.kg-1, 0.052 and 0.104 g.kg-1 n-butanol fraction and 0.042 and 0.084 g.kg-1 water fraction respectively for 12 days. The normal control group and the model control group were given an equal volume of an aqueous solution containing 0.3% Tween-80. One hour after the last administration, except for the normal control group, mice in other groups were given ip xanthine 0.6 g.kg-1.1 h after orbital venous plexus blood, serum uric acid levels were measured by phosphotungstic acid colorimetry , Colorimetric determination of xanthine oxidase activity. GC-MS analysis of the active site that reduces serum uric acid level to identify its main chemical composition. Results The level of serum uric acid in hyperuricemia model group was significantly higher than that of the normal control group (P <0.01). Allopurinol 0.04 g.kg-1, EEPR 0.256 and 0.512 g.kg-1 significantly reduced the model Serum uric acid levels of rats in the model group decreased from 464 ± 143 μmol.L-1 to 273 ± 80,346 ± 85 and 302 ± 72 μmol·L-1, respectively (P <0.05). The concentrations of petroleum ether (0.079 and 0.158 g.kg-1) in EEPR significantly decreased the level of serum uric acid in the model mice from (446 ± 139) μmo.lL-1 to 328 ± 100 and (314 ± 112) μmol .L-1 (P <0.05), the other parts of each dose group had no significant effect on serum uric acid levels. Petroleum ether 0.158 g.kg-1 significantly inhibited xanthine oxidase activity from (18 ± 8) U.L-1 in the model control group to (11 ± 5) U.L-1 (P <0.05). GC-MS analysis showed that the trans-octadecenoic acid methyl ester accounted for 60.77%, the hexadecanoic acid methyl ester accounted for 18.99% and the hexadecanoic acid methyl ester accounted for 9.31%. Conclusions The ether fraction of EEPR can reduce serum uric acid in hyperuricemia model mice, and unsaturated fatty acid is the main component of fatty acid in petroleum ether.