论文部分内容阅读
目前,JPEG图像的通用隐写检测是基于监督学习的,其关键技术包括图像特征提取和分类器的设计。首次提出了运用半监督学习中的EM算法来进行分类器的设计,该方法利用大量未标记样本辅助少量有标记样本进行分类器的学习。针对经典的JPEG隐写方法:Outguess和F5,用监督学习与文中半监督学习方法进行实验对比,结果表明,在缺少大量标记样本的情况下,文中方法能得到较好的分类性能,从而提高了JPEG图像通用隐写检测方法的实用性。