论文部分内容阅读
针对类脑计算系统中NEST脉冲神经网络仿真器运行速度慢和功耗高的问题,设计一种基于现场可编程逻辑门阵列(FPGA)集群的NEST脉冲神经网络仿真器。在改进NEST仿真器结构的基础上,提出漏电流整合放电神经元计算模块的流水线并行架构,实现支持双核双线程和多节点多进程的FPGA集群设计。在皮质层视觉仿真模型上的实验结果表明,与基于Xeon E5-2620和ARM A9平台的NEST仿真器相比,基于FPGA集群的NEST仿真器计算能效和速度分别提升43.93倍、23.54倍和12.36倍、208倍,能为大规模类