论文部分内容阅读
针对基于目标的图像检索(OBIR)领域中,传统的视觉关键词方法忽略了局部特征之间的空间关系信息,导致检索准确度不高的问题,提出一种基于多重分割捆绑特征的目标图像检索方法.通过对图像进行多重分割,各分割区块用它所包含的尺度不变特征变换(SIFT)特征集合来描述,生成包含空间关系信息的捆绑特征;根据视觉关键词词库匹配捆绑特征,并提出一种改进的相似性度量方法计算捆绑特征相似度,再将该相似度作为权重融入到视觉关键词方法的向量空间模型中,计算图像相似度并进行排序.结果表明,该方法能够有效利用局部特征之间的空间