论文部分内容阅读
目前有多种特征提取方法用于文本自动分类,其中CHI方法效果较好,研究发现CHI方法存在着词与类别的无独立性假设及计算复杂度高等缺点,提出一种改进了的CHI方法ICHI(ImprovedCHI),通过分类实验仿真数据显示,在SVM与KNN分类中这种改进后的特征提取方法ICHI特征提取效果优于传统的CHI方法,改进后的方法ICHI能提高文本分类的准确率,适合局部特征提取.