论文部分内容阅读
为了更好地解决测井岩性识别问题,引入了一种基于粒子群优化的支持向量机算法.通过实际测井资料和岩性剖面资料进行学习训练支持向量机,并利用粒子群优化算法对支持向量机参数进行优化,建立了测井岩性识别的支持向量机模型.应用该方法对准噶尔盆地某井的测井岩性进行识别,并将该方法的识别结果与BP神经网络方法的识别结果进行了比较,结果表明该方法优于BP神经网络方法,具有识别正确率高、收敛速度快、推广能力强等优点.