论文部分内容阅读
目的:开发一种可以检测不同类型颅内出血并自动计算血肿体积的基于卷积神经网络的深度学习算法,探讨其识别的准确性及血肿分割的一致性。方法:数据集1纳入9594例颅脑CT平扫图像,随机选取223例颅内出血阳性患者作为颅内出血类型识别的测试集,剩余CT图像作为其训练集,评估测试集中算法识别五种不同类型颅内出血的效能。数据集2选取另外819例已人工勾画出血灶的CT图像,随机选取74例作为测试集,以人工手动分割为金标准,验证测试集中算法分割与人工分割的一致性。结果:在223例颅内出血阳性患者中,深度学习算法对五