论文部分内容阅读
采用特征差分方法研究了一类半导体问题的电子和空穴浓度方程et-x(Deex)-μeqex-μexqe-αμee(p-e+G)=-R(e,p)pt-x(Dppx)+μpqpx+μpxqp+αμpp(p-e+G)=-R(e,p)其中未知函数是电子和空穴浓度e,p。用特征差分方法对一维有界区域上的非齐次牛曼边界条件exΩ=g(x,t),pxΩ=r(x,t)及初始条件e(x,0)=e0(x),p(x,0)=p0(x)。分别给出区域内部和边界的计算方法,并且用最大模原理给出建立在线性差值上的特征差分方法的L∞模估计,误差界为K(Δt+h)。
The eigen-difference method is used to study the electron and hole concentration equations for a class of semiconductor problems et-x (Deex) -μeqex-μexqe-αμee (p-e + G) = R (e, p) pt-x (Dppx) + μpqpx + μpxqp + αμpp (p-e + G) = - R (e, p) where the unknown function is electron And hole concentration e, p. By using the feature difference method, the nonhomogeneous Neumann boundary conditions 一exΩ = g (x, t), pxΩ = r (x, t) and the initial conditions e (X, 0) = e0 (x), p (x, 0) = p0 (x). The calculation method of the interior and the boundary is given respectively. The L∞model estimation of the feature difference method based on the maximum modulus principle is given. The error bound is K (Δt + h).