论文部分内容阅读
当前应用于室内的视觉同时定位和地图构建算法(VSLAM)主要面向静态的环境,算法的定位精度和稳定性会大大受到环境中运动物体的影响。针对这一问题,提出了一种面向室内的动态场景下的VSLAM方法。在ORB-SLAM2架构上进行改进。在相机捕捉图像后,首先利用GCNv2神经网络对图像提取出特征,同时利用轻量级的ESPNetV2神经网络对图像完成语义分割。然后,结合改进的移动一致性检测来确定动态物体,剔除其动态特征获得其静态特征点来完成位姿估计,最终生成含有语义信息的点云地图和八叉树地图。采用TUM数据集验