论文部分内容阅读
入侵检测传统方法的准确性和有效性已经无法满足大数据时代的需求,机器学习算法日趋成为主流。现主要研究侧重于机器学习算法中的支持向量机,但其也有自身的缺点。因此,引入其他机器学习中的其他优秀分类算法,并使用经典的NSL-KDD数据集对比算法的准确性,分析适用环境,为将来不同场景下的入侵检测分析提供基础。在使用数据集完成模型训练后,使用ROC曲线、准确率等指标对模型进行评估,得出了较好的结果。