论文部分内容阅读
为复杂的发酵过程建立软测量模型要求模型最好能够给出预测值的置信区间,以便技术人员对发酵过程的真实状况和模型的可靠性进行评估。贝叶斯极限学习机能够在实现预测的同时一并给出预测值的置信区间,因此将其用于发酵过程的软测量建模。然而,实际发酵过程中的输入数据往往带有噪声,贝叶斯极限学习机仅能处理输出含噪声的情况。针对这个问题,提出了输入不确定贝叶斯极限学习机。在原有的贝叶斯推理过程中引入输入不确定性,得到了综合考虑输入输出噪声的模型参数和预测置信区间。最后利用青霉素发酵过程进行仿真验证,建立了产物质量浓度的