论文部分内容阅读
对DCT城基于拉普拉斯统计模型的语音增强,分析了模型因子的估计误差及其对于算法整体增强性能的影响,并根据广义高斯分布模型度其形态参数的概念与性质,提出了一种新的拉普拉斯模型因子估计方法,该方法结构简单,它利用拉普拉斯模型条件下语音分量方差与模型因子的对应关系,间接地获取模型因子的估计,算法不仅有效地消除了噪声分量对于估计精度的影响,而且可以快速地跟踪语音分量的变化。仿真结果表明,基于该模型因子估计方法的语音增强算法在多种噪声背景下具有更出色的语音增强效果。