论文部分内容阅读
以黄萎病胁迫下棉花叶片为供试材料,分析了黄萎病棉叶氮素含量(LNC)与光谱红边参数间的关系,建立了黄萎病棉叶LNC(Leaf nitrogen content)的光谱红边参数诊断模型。结果表明:(1)随着黄萎病严重程度的增加,棉叶LNC逐渐减小,且差异显著;(2)黄萎病棉叶红边参数红边位置(REP)、红边振幅(Dr)、红谷位置(Lo)、红边深度(Depth672)和红边面积(Area672)均减小,红边宽度(Lwidth)增加,且Area672的值减小的幅度最大,Dr减小的幅度最小,Lwidth的值增加的幅度较大;(3)黄萎病棉叶LNC含量均与红边参数REP、Lo、Depth672和Area672呈极显著正相关,与Lwidth呈极显著负相关,与Dr未达显著相关;(4)基于红边参数建立的黄萎病棉叶LNC含量的诊断模型均达到极显著水平(P<0.01),其中以Area672为自变量建立的黄萎病棉叶LNC的诊断模型的精度最高,R2超过0.7,RMSE小于0.6,RE小于0.007,能很好地诊断黄萎病棉叶LNC。
The relationship between nitrogen content (LNC) and spectral red edge parameters of the leaves of Verticillium dahliae was analyzed under the stress of Verticillium wilt. The spectra of leaf nitrogen content (LNC) Red edge parameter diagnosis model. The results showed as follows: (1) The LNC of cotton leaves decreased with the severity of Verticillium wilt, and the difference was significant. (2) The red edge position (REP), red edge amplitude , Lo, Red depth (Depth672) and red edge area (Area672) decreased, red edge width (Lwidth) increased, Area672 value decreased the most, Dr decreased the least (3) LNC content in leaves of Verticillium wilt was significantly and positively correlated with the red edge parameter REP, Lo, Depth672 and Area672, and was extremely significantly negatively correlated with Lwidth, (4) The diagnostic models of LNC content in leaves of Verticillium dahliae based on the red edge parameters all reached the extremely significant level (P <0.01). The diagnosis model of LNC in cotton leaves with Verticillium wilt The highest accuracy of R2, R2 more than 0.7, RMSE less than 0.6, RE less than 0.007, can be a good diagnosis of Verticillium wilt LNC.