论文部分内容阅读
不确定数据聚类是传统数据挖掘的扩展,面对不确定数据聚类,研究者们经常把聚类问题描述成组合优化问题,并设计启发式聚类算法进行求解.现有的启发式聚类算法,如UK-means和UK-Medoids具有容易理解和实现简单等优点,但初始解敏感问题严重影响了聚类质量.本文在近似骨架理论的基础上,提出了一种近似骨架启发式聚类算法APPGCU(Approximate backbone guided heuristic clustering algorithm for uncertain data).该算法首先对原数据集完