论文部分内容阅读
对猪肉、牛肉、羊肉及虾等几种生鲜农产品进行了减压贮藏实验,通过检测各种样品不同保藏时间的挥发性盐基氮含量(TVB—N)、细菌总数、pH值及感官评分数据,以期实现对其新鲜度的准确分类。实验结果表明,任何单一理化或感官指标都难以获得理想的分类正确率?在此基础上,运用支持向量机(supportvectormachine,SVM)方法对以上数据进行合理的综合训练,并对参数进行优化,从而得到SVM神经网络模型,利用此模型进行肉品的新鲜度分类预测,可大大提高分类正确率: