From microscopic theory to macroscopic theory—symmetries and order parameters of rigid molecules XU Jie&ZHANG PingWen Abstract Density functional theory is used to describe the phase behaviors of rigi
本文首先定义具有量纲函数的重分形测度,然后证明当Euclid空间中的两个重分形测度具有等价的量纲函数时,它们也等价.进一步,对于直线上满足强分离条件(SSC)的自相似集,在某些加倍条件下,本文给出判断其重分形分支的量纲函数的充要条件.
本文研究Riemann流形上的改进的p-Laplace方程,运用截断函数的估计、Hessian比较定理和Laplace比较定理,得到该方程正解的梯度估计.并应用该结论,得到在Riemann流形上关于改进的p-Laplace方程正解的Harnack不等式和Liouville型定理.
本文考虑一类超线性Hill型对称碰撞方程的对称碰撞周期解的存在性、重性和分布问题.通过坐标变换的方法把碰撞相平面转化为全平面进行研究,在一类关于时间映射的超线性条件下证明有外力方程无穷多个对称碰撞调和解和对称碰撞次调和解的存在性;同时研究在没有外力时方程的对称碰撞周期解的稠密性分布.本文还给出对称碰撞方程对称碰撞周期解存在的充分条件.
本文研究L2(Rn)上伸缩矩阵A满足|detA|>1的半正交多小波框架.本文得到半正交和严格半正交框架的一系列性质及刻画.本文证明半正交Parseval多小波框架与广义多分辨分析(GMRA)Parseval多小波框架是等价的.特别地,本文利用最小频率支撑(MSF)多小波框架和小波集,构造若干半正交多小波框架的例子.
本文研究Fock-Sobolev空间上稠密定义算子,将这些算子统一表示成积分算子,利用积分算子的方法得到了它们的一个充分条件,并构造反例说此充分条件是非必要的,还得到这些算子为紧算子的两个充分条件.最后构造符号函数在复平面上每一点处本性无界的紧和Sp-类(0
令K是一个内部(记作intK)包含原点o的凸体,bdK为其边界,m为覆盖K所需的intK的平移的最小个数.本文证明,存在正实数η和含于η(bdK)的m元点集C1使得C1+int K覆盖K;存在正实数η′、实数γ∈(0,1)和含于η′(bd K)的m元点集C2使得C2+γK覆盖K.基于这两个事实,本文得到关于凸体覆盖的Hadwiger猜想的两个等价形式.本文还引入一个可以替代宗传明提出的攻克Hadw
本文考虑连串反应中控制火焰的耦合广义Kuramoto Sivashinsky-Ginzburg Landau(GKS-CGL)方程组的周期初值问题,主要研究其解在系数g→0和δ→0时的极限行为.首先,采用Galerkin方法,通过构造一系列精细的先验估计,得到GKS-CGL方程组周期初值问题整体光滑解的存在唯一性.其次,利用一致有界估计证得GKS-CGL方程组极限解收敛,并给出解的收敛率估计.
本文主要研究加权Stepanov伪概自守函数的一些基本性质.首先,本文研究一个加权Stepanov伪概自守函数与它的Stepanov概自守部分的关系.利用这些关系,本文将这类函数的复合定理进行改进.其次,本文研究加权Stepanov伪概自守函数空间中的卷积算子,这里的卷积算子是由绝对可积函数所生成.最后,应用压缩映射原理,本文得到两类Volterra积分方程的加权Stepanov伪概自守解的存在唯
令Z/(pe)表示整数剩余类环,其中p为素数且e 2为正整数.令f(x)表示Z/(pe)上的n次本原多项式,G′(f(x),pe)表示Z/(pe)上所有由f(x)生成的本原序列构成的集合.设序列a∈G′(f(x),pe),它有唯一的p进制展开a=a0+a1p+···+ae-1pe-1.令φ(x0,x1,...,xe-1)=g(xe-1)+μ(x0,x1,...,xe-2)表示由Fe p到Fp的一个