论文部分内容阅读
FCM(Fuzzy C-Means)算法是一种基于目标函数优化的模糊聚类方法,其收敛地于初始条件敏感。与HCM(Hard C-Means)算法相比,FCM算法的模糊分割矩阵提供的信息更加丰富。本文采用冗余聚类中心初始化,根据模糊分割矩 列和以及实际的要求逐级减少类别数目。实验结果显示改进的算法得到的收敛中心稳定,并且中以融合有关数据分布的先验知识得到所期望的结果。