论文部分内容阅读
针对模糊C-均值聚类算法不能很好对非椭球形分布,或结构形状不对称分布的数据进行聚类的问题,文章提出了一种基于点密度的模糊C-均值聚类算法PD-FCM,该算法利用数据的点密度能够反映其对不同数据密度分类的符合程度的这一特性,构造了修正参数来改进基于欧几里德距离度量方式,从实现对FCM算法的优化。在人造数据集和知名数据集上的实验结果该算法在准确率和隶属度的准确性方面优于模糊C-均值聚类算法。