论文部分内容阅读
为了进一步提高点云图像船舶分类方法的分类准确率,提出了一种基于三维卷积神经网络(3DCNN)的点云图像船舶分类方法。首先采用密度网格方法将点云图像转为体素网格图像,将体素网格图像作为3DCNN的输入对象;接着通过设计的6层3D CNN提取体素网格图像的高水平特征,捕捉结构信息;最后在输出层利用Softmax函数进行分类,得到最终的分类结果。实验结果表明,在自建的点云图像船舶数据集上,所提方法的分类准确率达到了96.14%,比3DShapeNets方法和VoxNet方法分别提高了5.97%和2.46%