论文部分内容阅读
提出一种自适应多样性保持的多目标粒子群算法(ADMMOPSO)。该算法引入多样性保持阈值(λα)来控制非劣解的分布,当多样性指标高于阈值λα时,引入一种基于网格的全局最优粒子的选择策略增加种群向真实Pareto前沿收敛的概率,并提升非劣解的多样性。通过4个测试问题和3个测试标准,并与其他算法进行比较,结果表明ADMMOPSO获得了质量较高的非劣解。