论文部分内容阅读
众所周知,单调函数的一个最基本性质:若f(x)是区间I上的单调函数x1,x2∈I,且f(x1)=f(x2),则x1=x2.下面我们利用这个性质来证明《数学通报》2007年8期数学问题第1687题,进而再证明著名的施泰纳—莱默斯定理.(问题解答第1687题)△ABC中,两条角平分线BE,CD和延长线交△ABC的外接圆
It is well known that one of the most basic properties of a monotone function is that x (x1) = x2 if f (x) is a monotone function x1, x2∈I over interval I, and x1 = x2. Let us use this property Prove the Mathematical Problem No. 1687 in Mathematical Bulletin, 2007 and prove the famous Steiner-Lymess theorem again. (Question 1678) △ ABC, the two angle bisectors BE, CD and extend Line intersection △ ABC circumcircle