论文部分内容阅读
针对以往的矩阵分解方法不能保证分解结果非负的问题,根据非负矩阵分解(NMF:Non-negative Matrix Factorization)结果非负的特点,提出了基于NMF的阴影检测方法,并以此为基础将进一步引入的分块非负矩阵分解(BNMF:Block Non-negative Matrix Factorization)应用于阴影检测。通过NMF/BNMF提取训练样本中阴影的亮度特征,再根据特征识别测试样本中的阴影区域。实验结果表明,与基于奇异值分解方法相比,该算法的阴影检测细节更清晰,具有更好