论文部分内容阅读
凝聚态物理、材料科学、化学和生物科学的研究需要用到强磁场技术,铁磁线圈是强磁场装置(特别是脉冲强磁场装置)的基础部件,由高导热性、高导电性和高强度的材料组成,Cu-Ag合金原位纤维复合材料应运而生,其相关报道最早可追溯到20世纪六七十年代。Cu-Ag合金原位纤维复合材料是一种纳米晶双相复合材料,较单相材料具有更高的强度和热稳定性,同时还具有较强的导电性能。经过半个世纪的发展,Cu-Ag合金原位纤维复合材料的应用范围扩展到框架材料、接触线及接头等,Ag含量由最初的80%降低至10%~30%(均为质量分数),成本显著降低,且具有相当的电学和力学性能。在此期间,大塑性变形过程中组织形态结构的演变、相界面、相间距及尺寸等对性能的影响已经得到了较充分的研究,并且能通过热处理技术调和变形过程中强度上升而电导率下降的矛盾;研究者们还通过加入Cr、Nb、Zr、Y、Gd、Ce等第三甚至第四组元进行微合金化,在替代Ag的同时产生更多对合金有益的作用,以期进一步提高强度、塑性等综合性能,并取得了一定成效。但早期的研究还存在一些不足:(1)未从更微观的角度进行更深入的研究;(2)传统的多道次塑性加工技术流程较长;(3)性能预测理论模型的普适性不够。因此,近七年来除更全面深入地研究拉拔、轧制及热处理等工艺外,对Cu-Ag合金原位纤维复合材料的探索主要聚焦于磁场下定向凝固、大塑性变形制备工艺、更低的Ag含量及添加其他合金元素对其性能的影响,以及引入先进分析表征技术。研究发现磁场下定向凝固可改变晶体的生长方式,通过对枝晶大小和间距、共晶组织体积分数等进行控制来影响材料的性能,使强度进一步提高。等通道转角挤压(Equal channel angular pressing,ECAP)及高压扭转(High-pressure torsion,HPT)等大塑性变形技术在Cu-Ag合金上也得到了应用,使晶粒进一步细化,塑性等综合性能得到提高,为短流程制备Cu-Ag原位纤维复合材料提供了方向。通过对制备技术及微合金化的深入研究,目前Cu-Ag原位纤维复合材料中的Ag含量已经可降低到10%(质量分数)以下,且6%Ag含量的铜基原位复合材料在日本已经被成功应用于强磁场技术中。此外,从更微观的原子/分子角度,研究者揭开了位错、孪晶、织构在制备过程中的产生、演变及对性能的影响规律。本文从Cu-Ag原位纤维复合材料的力学与电学性能、强度与电导率的匹配关系展开讨论,综述了这一领域的研究现状,并探讨了其发展前景和目前存在的问题。