论文部分内容阅读
Based on 23 U/Th analyses and 532 oxygen isotopic data, an averaged 80-a stalagmite oxygen isotopic composition series was established through 95 to 56 thousand years before present (ka BP) from two speleothems in Shanbao Cave, Shennongjia, central China. Shanbao Cave record (referred to as SB record) replicates well with Hulu Cave record, extending the characteristics of millennial oscillations in East-Asian-Summer-Monsoon (EASM) to the past 95 ka. The trend of the SB record generally follows mid-July solar insolation at 65°N, suggesting that mid-high northern latitude insolation, in the first or- der, controls changes of EASM intensity. Millennial oscillations of EASM recorded in the stalagmites are well related to the Greenland interstadials referred to as Dansgaard/Oeschger (D/O) events from 1 to 22, indicating that rapid ocean-atmosphere reorganization in North Atlantic has a remote effect in EASM. The well-dated D/O events by stalagmites probably provide an absolute calibration for chro- nologies of Greenland ice cores. The timings of D/O events in the SB record are different variously from those in Greenland ice cores. For D/O 19 and 20, the age offsets between the stalagmites’ and the Greenland ice cores’ record are significant, larger than the uncertainties of uranium-series dating. The two events in the SB record are younger than those in North GRIP time scale by 1―2 ka, and older than the counterparts in GISP2 by approximately 3―4 ka. A comparison between the SB and Brazil stalag- mite record shows an anti-phase relation in millennial-scale monsoon precipitation between the two localities. This supports a mode for the coupled ocean-atmosphere “See-saw”.
Based on 23 U / Th analyzes and 532 oxygen isotopic data, an averaged 80-a stalagmite oxygen isotopic composition series was established through 95 to 56 thousand years before present (ka BP) from two speleothems in Shanbao Cave, Shennongjia, central China. Shanbao Cave record (referred to as SB record) replicates well with Hulu Cave record, extending the characteristics of millennial oscillations in East-Asian-Summer-Monsoon (EASM) to the past 95 ka. The trend of the SB record generally follows mid-July solar insolation at 65 ° N, suggesting that mid-high northern latitude insolation, in the first or- der, controls changes of EASM intensity. Millennial oscillations of EASM recorded in the stalagmites are well related to the Greenland interstadials referred to as Dansgaard / Oeschger (D / O) events from 1 to 22, indicating that rapid ocean-atmosphere reorganization in North Atlantic has a remote effect in EASM. The well-dated D / O events by stalagmites probably provide an absolute calibration The timings of D / O events in the SB record are different variously from those in Greenland ice cores. For D / O 19 and 20, the age offsets between the stalagmites’ and the Greenland ice cores ’record are significant, larger than the uncertainties of uranium-series dating. The two events in the SB record are younger than those in North GRIP time scale by 1-2 ka, and older than the counterparts in GISP2 by approximately 3-4 ka . A comparison between the SB and Brazil stalag- mite record shows an anti-phase relation in millennial-scale monsoon precipitation between the two localities. This supports a mode for the coupled ocean-atmosphere “See-saw ”.