【摘 要】
:
基于细晶强化和第二相强化原理,通过在一种近β钛合金中加入微量硼(B)元素,以强化该合金.首先设计不同含硼量的Ti85 Fe6 Cu5 Sn2 Nb2合金,并用真空非自耗电弧炉制备,随后对合金在800℃下进行多道次热轧及最终淬火.通过组织观察、拉伸力学性能测试、断口观察及透射电子显微分析,考察不同硼含量对Ti85 Fe6 Cu5 Sn2 Nb2合金组织及力学性能的影响.结果表明,微量硼元素可以使合金的晶粒细化,强度明显提高,但伴随着塑性下降.添加质量分数为0.15%硼可以使合金具有较好的综合力学性能(σ0.
【机 构】
:
燕山大学 亚稳材料制备技术与科学国家重点实验室,河北 秦皇岛066004;济宁学院 物理与信息工程系,山东 曲阜 273155
论文部分内容阅读
基于细晶强化和第二相强化原理,通过在一种近β钛合金中加入微量硼(B)元素,以强化该合金.首先设计不同含硼量的Ti85 Fe6 Cu5 Sn2 Nb2合金,并用真空非自耗电弧炉制备,随后对合金在800℃下进行多道次热轧及最终淬火.通过组织观察、拉伸力学性能测试、断口观察及透射电子显微分析,考察不同硼含量对Ti85 Fe6 Cu5 Sn2 Nb2合金组织及力学性能的影响.结果表明,微量硼元素可以使合金的晶粒细化,强度明显提高,但伴随着塑性下降.添加质量分数为0.15%硼可以使合金具有较好的综合力学性能(σ0.2=1105 MPa,δb=4.5%).随着硼含量的增加,合金的强度升高,最高可达1156 MPa.硼的加入在合金中形成正交结构的TiB相,分布于β钛基体中.变形过程中,TiB断裂、TiB割裂基体及其与基体脱粘,产生裂纹源,导致合金塑性下降.
其他文献
采用Gleeble-3500热模拟试验机对挤压态AZ40合金进行热压缩实验,分析压缩后不同温度真应力-应变曲线的变化趋势,得到流变应力受变形温度和应变速率等因素的影响规律;在双曲正弦关系的基础上构造挤压态AZ40合金的本构方程,在动态材料模型(DMM)基础上建立挤压态AZ40合金的热加工图,从而确定挤压态AZ40镁合金的热变形加工范围.结果表明:明显的动态再结晶是挤压态AZ40镁合金流变曲线的特点,在压缩过程中,随变形温度的升高,挤压态AZ40镁合金的峰值应力减小;随应变速率升高,挤压态AZ40镁合金的峰
采用热压罐成型工艺制备碳纤维/双马树脂复合材料,并采用空气炮冲击装置、超声水浸C扫描探伤装置和万能材料试验机等测试手段,研究碳纤维类型和碳纤维体积分数对复合材料层板抗高速冲击性能的影响.结果表明:与CCF300碳纤维、CCF700碳纤维和CCF800H碳纤维相比,TZ1000G碳纤维复合材料抗高速冲击性能最优;碳纤维体积分数越高,复合材料层板抗高冲击性能越高;碳纤维复合材料的破坏模式与冲击速率有关,冲击速率较低时,复合材料层板弹击面出现周围含纤维分层开裂的圆形凹坑,背弹面出现沿纤维方向的分层开裂;冲击速率
为了实现铁基非晶合金在净化重金属离子溶液技术这一领域的突破乃至应用,采用Fe-Si-B系非晶态雾化粉末研究了其对溶液中毒性较强的Cd(Ⅱ)的去除效果.结果 表明:反应过程中生成的Cd(Ⅱ)的相关产物说明该重金属离子的去除是一个还原与吸附并存的过程,且生成的反应拟合曲线符合伪一级动力学模型.通过研究不同环境因素对Fe-Si-B非晶态雾化粉末去除Cd(Ⅱ)的影响,发现去除效率与温度、粉末投加量呈正相关关系,与溶液中Cd(Ⅱ)的起始浓度呈负相关关系.pH值因素影响的结果说明在碱性环境中有利于Cd(Ⅱ)去除速率和
采用激光熔覆技术在40 Cr钢基材表面制备CoCuFeNiTi高熵合金涂层,使用SEM、XRD和EDS等手段分析涂层的显微组织和相组成,研究了涂层的制备工艺、显微硬度、耐磨损和耐腐蚀性能.结果 表明:在激光功率为700W、扫描速度为6mm/s条件下制备的CoCuFeNiTi高熵合金涂层表面质量较好,涂层与基体之间形成了良好的冶金结合;这种涂层由FCC相、少量的Cu4Ti相和微纳级富Cu析出相构成,具有典型的树枝晶显微组织,Cu元素在枝晶间偏聚并形成微纳级富Cu析出相;涂层的显微硬度约为438.83HV,是
高温压缩性能是复合材料结构设计关键的力学参数,但是传统技术手段难以对其进行有效测量.通过搭建基于数字图像相关方法的高温实验系统,开展了复合材料的高温压缩实验,获得了130℃环境下CCF300/5228A碳纤维增强复合材料层合板0°和90°压缩性能、应力-应变曲线以及不同载荷情况下轴向应变分布及演化,并且与室温实验结果进行了对比.进一步通过扫描电镜进行了压缩试样的断口分析,结合实验结果,探讨了高温和铺层形式对压缩性能的影响.最后,通过实验验证了高温实验系统及相应实验方法的可行性和可靠性.结果表明:130℃环
采用超音速火焰喷涂(HVAF)方法成功制备出不同种类及粒度陶瓷颗粒复合的不锈钢涂层,系统研究陶瓷颗粒的种类及粒度对复合涂层的硬度、孔隙率与耐蚀性能的影响;通过扫描电子显微镜、全自动硬度计、Image Pro Plus软件以及电化学工作站等分析测试技术对不锈钢/陶瓷颗粒复合涂层的微观结构、硬度及腐蚀行为进行系统表征与分析.结果表明:粗粒径棕刚玉(Al2O3)复合的不锈钢涂层的孔隙率低(0.7863%)、硬度高(637HV0.1)且耐蚀性能优异,其自腐蚀电位为-454.14 mV、自腐蚀电流密度为22.208
环境障涂层(EBC)面层的高致密度对于保障EBC的抗水氧腐蚀性能、提高SiCf/SiC热端部件的服役寿命具有重要意义.本研究提出涂层致密化的预热处理方法,以大气等离子喷涂(APS)Yb2 SiO5涂层作为代表性材料,在涂层高温服役前进行1250~1450℃的预先热处理,显著提高了涂层致密度.通过不同结构孔隙的分类研究,阐明了EBC面层结构及性能在热处理过程中的变化规律,揭示了预热处理促使涂层内孔隙愈合的致密化机理.结果表明:喷涂态的Yb2 SiO5涂层内部存在3种缺陷,包括二维(2 D)形貌的片层内微裂纹
高温合金具有优良的综合性能,是航空发动机高性能构件的首选材料.由于高温合金带材屈服强度高、壁厚超薄、回弹明显、构件成形精度难以控制,因此研究现有循环本构模型对于高温合金带材变形预测的适用性具有重要意义.基于循环剪切实验,研究了不同循环塑性本构模型(Armstrong-Frederick(A-F)模型、Yoshida-Uemori(Y-U)模型和the anisotropic nonlinear kinematic(ANK)模型)对高温合金超薄带材循环塑性变形响应的表征效果.同时,通过U形弯实验和有限元仿真
Starch is one of the richest natural polymers with low-cost,non-toxic and biodegradable,but is seldom directly used as corrosion inhibitor due to its poor inhibitive ability and low water solubility.To solve this problem,cassava starch-acryl amide graft c
包埋渗铝法可在钢基体表面制备出一层致密、坚固、连续的Fe-Al渗层,以改善基体性能.本文在不同温度和不同时间下对Q235低碳钢进行包埋渗铝,形成Fe-Al渗层,采用X射线衍射、扫描电镜及能谱分析等方法研究了渗铝层的物相结构、表面及截面形貌和成分,采用显微硬度仪测量了截面硬度.结果 表明,不同渗铝温度下获得的渗铝层,主要含有Fe2Al5和FeAl3两相,且750℃得到的渗层存在较多Fe2Al5相;随着渗铝温度升高,Fe-Al渗层厚度增加,Al原子扩散系数增大,但显微硬度降低;不同渗铝时间下制备的渗铝层,物相