New insights into cell-cell communications during seed development in flowering plants

来源 :植物学报(英文版) | 被引量 : 0次 | 上传用户:cjcjmalei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The evolution of seeds is a major reason why flowering plants are a dominant life form on Earth.The developing seed is composed of two fertil-ization products,the embryo and endosperm,which are surrounded by a maternally derived seed coat.Accumulating evidence indicates that efficient communication among all three seed components is required to ensure coordinated seed development.Cell communication within plant seeds has drawn much attention in recent years.In this study,we review current knowledge of cross-talk among the endosperm,embryo,and seed coat during seed development,and highlight recent advances in this field.
其他文献
The plant plasma membrane (PM) H+-ATPase is an essential enzyme controlling plant growth and development.It is an important factor in response to abiotic and biotic stresses and is subject to tight regulation.We are in demand for new sus-tainable natural
地震是给人类社会造成重大人员伤亡和财产损失的主要自然灾害之一,房屋脆弱性是地震灾害风险评估中的关键指标.基于历史灾情数据的脆弱性曲线由于其参数较易获取,能够更快对地震灾害的影响进行预测,被广泛用于宏观尺度地震灾害风险评估中.然而,由于灾情数据的限制,此类曲线的精度与地区适用性仍然有待提高.本研究以1996-2017年我国116次地震灾害中不同烈度区土木、砖木、砖混和钢混四种结构房屋的毁坏比例数据为基础,采用logistic函数构建全国和部分省区的房屋脆弱性曲线,并对不同地震等级下的房屋毁坏比例进行预测.本
利用天气雷达三维网格拼图资料,并针对正负样本数据不平衡问题,使用SMOTE方法进行处理,通过设计多层卷积神经网络,在网络末端加入SVM判别器,实现对雷电监测;使用改进的变分光流方法反演风场,利用半拉格朗日方法对雷达回波进行外推,使用设计的卷积神经网络进行雷电预报;实验表明通过卷积神经网络识别雷电的准确率为76.4%,外推30 min的预报准确率为54.0%,比传统的机器学习方法预报准确率有一定提高,对业务应用有一定的帮助.
The root microbiome refers to the community of microbes living in association with a plant\'s roots,and includes mutualists,pathogens,and commensals.Here we focus on recent advances in the study of root commensal community which is the major research ob
Adenosine triphosphate-dependent chromatin re-modeling complexes are important for the regu-lation of transcription,DNA replication,and genome stability in eukaryotes.Although genetic studies have illustrated various biological functions of core and acces
为分析矿区开采沉陷造成的地表大范围缓慢形变时空演化特征,本文基于15景哨兵1B降轨数据,采用小基线集技术(SBAS-InSAR)对矿区进行时序InSAR处理,获取矿区2019年10月-2020年3月的地表形变年平均速率和时序累计形变信息,利用形变量插值、形变剖面、标准差椭圆等方法对矿区地表形变时空演化特征进行分析,共识别出矿区19个沉降漏斗,其形变量在监测期内均逐渐增大,最大形变量达到217 mm;地表形变空间范围也在逐步扩大,在空间方向上由NE-SW(北东-南西向)发展.结合同期北京二号高分辨率光学影像
Auxin,one of the first identified and most widely studied phytohormones,has been and will re-main a hot topic in plant biology.After more than a century of passionate exploration,the mys-teries of its synthesis,transport,signaling,and metabolism have larg
Adverse variations of abiotic environmental cues that deviate from an optimal range impose stresses to plants.Abiotic stresses severely impede plant physiology and development.Con-sequently,such stresses dramatically reduce crop yield and negatively impac
Success of plants largely depends on their ability to defend against herbivores.Since emergence of the first voracious consumers,plants maintained adapting their structures and chemistry to escape from extinction.The constant pressure was further accelera
针对单一时空融合方法或使用单一中等空间分辨率影像(如Landsat影像)和MODIS影像时空融合的不足,本文提出综合利用经典的STARFM算法、基于地物内组分时相变化模型的地表反射率时空融合算法,联合使用多种空间分辨率更优(≤30 m)的传感器影像,以“时间最邻近及空间分辨率优先”为原则对传统单一中等空间分辨率影像预测周期(如Landsat影像为16天)进行分段独立预测,并优化组合两种预测方法的预测结果,进而获取更为精确的逐日中等空间分辨率预测影像.基于上述方法所得结果,可应用于森林火灾监测场景中.以四川