论文部分内容阅读
针对评分数据矩阵的稀疏性导致推荐算法质量较低的问题,文章设计了一个改进的协同过滤算法:通过在算法中加入了用户兴趣的信息的方法,改进了用户相似度计算和扩展用户评分矩阵,从而改进了基于用户聚类的协同过滤算法.通过对比改进后算法的平均绝对偏差,该算法可以更准确地计算用户的相似性,并且降低数据稀疏性所带来的影响.实验的结果表明,该算法提高了协同过滤算法的准确性.