Aero-engine fault diagnosis applying new fast support vector algorithm

来源 :航空动力学报 | 被引量 : 0次 | 上传用户:ww830625
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
A new fast learning algorithm was presented to solve the large-scale support vector machine ( SVM ) training problem of aero-engine fault diagnosis.The relative boundary vectors ( RBVs ) instead of all the original training samples were used for the training of the binary SVM fault classifiers.This pruning strategy decreased the number of final training sample significantly and can keep classification accuracy almost invariable.Accordingly , the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile , owing to the reduction of support vector number , the classification time was also reduced.When sample aliasing existed , the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides , the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing.This can improve classification accuracy effectively.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%.Simulation results show that this fast learning algorithm is effective , reliable and easy to be implemented for engineering application. A new fast learning algorithm was presented to solve the large-scale support vector machine (SVM) training problem of aero-engine fault diagnosis. The relative boundary vectors (RBVs) instead of all the original training samples were used for the training of the binary SVM fault classifiers. This pruning strategy decreased the number of final training sample significantly and can keep the classification accuracy almost invariable. Accreditedly, the training time was shortened to 1 / 20compared with basic SVM classifier.Meanwhile, owing to the reduction of support vector number, the classification time was also reduced .When sample aliasing existed, the aliasing sample points which were not of the same class were eliminated before the relative boundary vectors were computed.Besides, the samples near the relative boundary vectors were selected for SVM training in order to prevent the loss of some key sample points resulted from aliasing. This can improve classification accuracy effectivel y.A simulation example to classify 5classes of combination fault of aero-engine gas path components was finished and the total fault classification accuracy reached 96.1%. Simulation results show that this fast learning algorithm is effective, reliable and easy to be implemented for engineering application.
其他文献
“我不是首批入额法官。”说这话的是上海市徐汇区人民法院政治部主任张雪梅。面对记者的疑惑,张雪梅笑笑说,试点改革肯定需要牺牲一部分人的利益,既然改革方案明确提出法院
剪 影  他们,分属两个阵营  一张窗纸,契约  谁也不是谁的地主  他们吃离别的饭,嘱咐冷暖  航班因此延误;匆匆的吻,湿凉  火车嘶吼,约等于一个疯了的人  泪奔……怄气,又团圆——  (黑剪影,心尖儿上的麦芽糖  ——小剂量的砒霜)  她还有游击队员的身手  ……只是,膝盖冰凉  光洁,如贝壳  火 柴  裸着的脚还没收起来  月亮便开始走极端,瘦身  不是一粒药片,就是一把弯刀——  病人
秋江月夜  倚醉寒汀恍若仙,浮云去水两悠然。  一蓑烟雨箫声起,几棹波光雁影牵。  露浸菊馨环野径,风撩树杪拂遥天。  余年得伴盟鸥趣,月入霜襟可解禅。  巫山一段云·闲题  柳外朦胧月,汀头缱绻心。如缄往事共谁吟,辗转鬓霜侵。 细腻风飘絮,伶仃雨打林。这般滋味怯追寻,一顾一沾襟。  忆甲午春与竹兄并宇威、文成二弟登  庐山险峰  匡秀名天下,凭临势欲倾。  舒张成浩瀚,偃蹇得峥嵘。  老去千年结
“这么多旅客和价值昂贵的飞机掌握在我手中,时刻牢记安全飞行,努力捉高飞行业务技能,产格按照规章制度执行飞行任务,是我的神圣职责!我将一如既往地确保飞行安全!”2003年1
针对星际探测中的引力辅助技术,通过引入两个参数,将平面椭圆型限制性三体模型拓展到三维椭圆型限制性三体模型.通过逆向与正向积分,得到引力辅助前后飞行器的能量和角动量,
在夜里扑腾久了,羽毛也被浸上油墨  最终,硬把贪睡的日头  啄得遍体鳞伤,血流如注  否则,锋利的喙,怎么,总  缀上西霞,蘸满东曙  除了寒风胁迫,冰雪封锁  还有何种缘由,能让英塔木温泉  那块巴掌大的水域  接踵栖身二百多只巨禽,神圣成  百丈凌下一枚火种  甚至,不惜改变候鸟的身份  顶着冷冷的蓝,掠过瑟瑟的黄  犁开绵绵的白  四只色泽炫目的黑天鹅  一家老小,向岸划来  可我,无法分清
南京禄口国际机场动力技术部供电科担负了整个机场(包括各驻场单位)的供电任务,负责机场供电的总调度和高低压用户的业务管理,并负责机场公司范围内高低压供电设备的运行、维
▲7月1日,即日起墨西哥航空公司提供每天在肯尼迪机场和墨西哥城之间的直飞服务。▲7月1日,瑞典民航事务管理局的统计数据显示,瑞典今年上半年民航旅客人数扭转最近3年来的下
在试验数据缺失无法获得中位寿命时,为避免偶然因素导致个别试验结果偏低而造成技术寿命偏低,浪费寿命的情况,提出了基于任意两点试验信息的寿命分散系数法.推导了基于对数正
一个地名自然代表一个地方,代表一个地方说话,或者说一个地名总能衍生出一个地方,与一个地方血相通、肉相连。但一个地名又总是与一个地方相脱节,似是而非,似非而是,血肉关系实际表现出来的却不是十分关联,甚至相去十万八千里。像一场马拉松比赛,许多地名总比地方跑得慢,总是尾随在地方的后面,有时落后了许多。但我认为它们更像田野里长出的稻子,它的外壳与那金灿灿的米粒的关系。米粒那么香甜,而呵护它的外壳却是粗糙的