论文部分内容阅读
The use of cooled dialysate temperatures first came about in the early 1980 s as a way to curb the incidence of intradialytic hypotension(IDH). IDH was then, and it remains today, the most common complication affecting chronic hemodialysis patients. It decreases quality of life on dialysis and is an independent risk factor for mortality. Cooling dialysate was first employed as a technique to incite peripheral vasoconstriction on dialysis and in turn reduce the incidence of intradialytic hypotension. Although it has become a common practice amongst incenter hemodialysis units, cooled dialysate results in up to 70% of patients feeling cold while on dialysis and some even experience shivering. Over the years, various studies have been performed to evaluate the safety and efficacy of cooled dialysate in comparison to a standard, more thermoneutral dialysate temperature of 37 ℃. Although these studies are limited by small sample size, they are promising in many aspects. They demonstrated that cooled dialysis is safe and equally efficacious as thermoneutral dialysis. Although patients report feeling cold on dialysis, they also report increased energy and an improvement in their overall health following cooled dialysis. They established that cooling dialysate temperatures improves hemodynamic tolerability during and after hemodialysis, even in patients prone to IDH, and does so without adversely affecting dialysis adequacy. Cooled dialysis also reduces the incidence of IDH and has a protective effect over major organs including the heart and brain. Finally, it is an inexpensive measure that decreases economic burden by reducing necessary nursing intervention for issues that arise on hemodialysis such as IDH. Before cooled dialysate becomes standard of care for patients on chronic hemodialysis, larger studies with longer follow-up periods will need to take place to confirm the encouraging outcomes mentioned here.
The use of cooled dialysate temperatures first came about in the early 1980 s as a way to curb the incidence of intradialytic hypotension (IDH). IDH was then, and it remains today, the most common complication affecting chronic hemodialysis patients. It decreases quality of life on dialysis and is an independent risk factor for mortality. Cooling dialysate was first employed as a technique to incite peripheral vasoconstriction on dialysis and in turn reduce the incidence of intradialytic hypotension. Although it has become a common practice amongst incenter hemodialysis units, cooled dialysate results in up to 70% of patients feeling cold while on dialysis and some even experience shivering. Over the years, various studies have been performed to evaluate the safety and efficacy of cooled dialysate in comparison to a standard, more thermoneutral dialysate temperature of 37 ° C Although these studies are limited by small sample size, they are promising in many aspects. Both demonstrated that cooled dialysis is safe and have efficacious as thermoneutral dialysis, they also report increased energy and an improvement in their overall health following cooled dialysis. They established that cooling dialysate temperatures improves hemodynamic tolerability during and after hemodialysis, even in patients prone to IDH, and does so without adversely affecting dialysis adequacy. Cooled dialysis also reduces the incidence of IDH and has a protective effect over major organs including the heart and brain. Finally, it is an inexpensive measure that reduces economic burden by reducing necessary nursing intervention for issues that arise on hemodialysis such as IDH. Before cooled dialysate becomes standard of care for patients on chronic hemodialysis, larger studies with longer follow-up periods will need to take place to confirm the hypothesis outcome mentioned here.